Discrete graphitic carbon compounds serve as tunable models for the properties of extended macromolecular structures such as nanotubes. Here, we report synthesis and characterization of a cylindrical C304H264molecule composed of 40 benzene (phenine) units mutually bonded at the 1, 3, and 5 positions. The concise nine-step synthesis featuring successive borylations and couplings proceeded with an average yield for each benzene-benzene bond formation of 91%. The molecular structure of the nanometer-sized cylinder with periodic vacancy defects was confirmed spectroscopically and crystallographically. The nanoporous nature of the compound further enabled inclusion of multiple fullerene guests. Computations suggest that fusing many such cylinders could produce carbon nanotubes with electronic properties modulated by the periodic vacancy defects.
Eccentric muscular actions involve the forced lengthening or stretching of muscles and tend to produce exertional injuries. This study used magnetic resonance (MR) imaging to serially evaluate muscles in five healthy, untrained subjects who performed exhaustive biceps exercise by doing isolated eccentric and concentric actions with a dumbbell. Symptoms were assessed, and T2-weighted images of the arms were obtained before exercise and 1, 3, 5, 10, 25, 40, 50, 60, and 80 days after exercise. Statistically significant increases in T2 relaxation times indicative of muscle injury occurred on each day of MR imaging evaluation in muscles performing eccentric actions, peaking on day 3 in two subjects; day 5, two subjects; and day 10, one subject. The pattern and extent of the abnormalities on MR images were variable. Pain, soreness, and joint stiffness were present on days 1, 3, and 5 in muscles that performed eccentric actions. MR imaging showed subclinical abnormalities that lasted as long as 75 days after the disappearance of symptoms (two subjects). Muscles that performed concentric actions had no changes in T2 relaxation times and were asymptomatic throughout the study.
Advanced organic laser dyes exhibiting high solubility and bipolar behavior are developed based on a structure combining bis-stilbene with carbazole (BSBCz). The materials show high photoluminescence quantum yields and large radiative rate constants in solutions, crystals, and blend and neat films. The introduction of alkyl groups significantly improves the solubility of BSBCz, and solution-processed films of the alkyl-substituted derivatives exhibit amplified spontaneous emission thresholds as low as 0.59 µJ cm −2 , which is comparable to those of vacuum-deposited BSBCz films. On the other hand, cyano-substitution on BSBCz (BSBCz-CN) increases electron-accepting properties, resulting in a bathochromic shift of the emission wavelength and improved bipolar behavior. In a BSBCz-CN-doped film, a low ASE threshold of 0.63 µJ cm −2 is achieved, which is one of the lowest values for organic laser dyes with green emission. In addition, organic light-emitting diodes based on BSBCz-CN neat films exhibit external quantum efficiencies of 1.8% and could withstand injection of high current densities of up to 500 A cm −2 under pulse operation. These properties along with low excited-state absorption cross sections make these materials an outstanding addition to the existing library of organic laser dyes, especially for consideration in electrically pumped lasers.
The effects of the local blood circulation and absolute torque on muscle endurance at different knee-joint angles were determined. The rate of muscle deoxygenation (using near-infrared spectroscopy), and the rate of muscle fatigue (using the slope of integrated electromyography, iEMG) were evaluated concurrently. Nine healthy subjects performed submaximal (50% maximal voluntary contraction. MVC) static knee extension at 50 degrees (extended position, EXT) and 90 degrees (flexed position, FLEX) joint angles until the target torque could no longer be maintained: that time was measured as the endurance time. They exercised with the circulation occluded (OCCL), and without (FREE) to study the possible effects of the local circulation. Although MVC torque was independent of joint angle [mean (SD) FLEX 250.6 (51.7) Nm and EXT 246.5 (46.6) N x m], significantly shorter (P<0.01) endurance time in FLEX [FREE 71.1 (10) s and OCCL 63.1 (8.8) s] than at EXT [FREE 115.3 (30) s and OCCL 106.7 (29.1) s] were obtained in both circulatory conditions. The iEMG-time slope was significantly greater in FLEX at the proximal and distal portion (P<0.05) in both circulatory conditions. Muscle deoxygenation rate in OCCL was significantly greater (P<0.05) at FLEX [20.8 (8.0)%] than EXT [10.9 (4.0)%]. The results would suggest that different knee-joint angle affects muscle endurance even if the local circulation is controlled. Circulatory disturbance would further reduce muscle endurance in EXT, but not in FLEX. Because of the greater muscle internal force in FLEX, local blood flow might be already limited even with a free circulation. The greater muscle deoxygenation and muscle fatigability would be related to the shorter muscle endurance in FLEX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.