We present here an investigation of the chemical composition of the various regions in the core of the Orion molecular cloud (OMC-1) based on results from the Caltech Owens Valley Radio Observatory (OVRO) millimeter-wave spectral line survey (Sutton et al.; Blake et al.). This survey covered a 55 GHz interval in the 1.3 rom (230 GHz) atmospheric window and contained emission from over 800 resolved spectral features. Of the 29 identified species 14 have a sufficient number of detected transitions to be investigated with an LTE "rotation diagram" technique, in which large numbers of lines are used to estimate both the rotational excitation and the overall abundance. The rotational temperatures and column densities resulting from these fits have then been used to model the emission from those remaining species which either have too few lines or which are too weak to be so analyzed. When different kinematic sources of emission are blended to produce a single feature, Gaussian fits have been used to derive the individual contributions to the total line profile. The uniformly calibrated data in the unique and extensive Caltech spectral line survey lead to accurate estimates of the chemical and physical parameters of the Orion molecular cloud, and place significant constraints on models of interstellar chemistry. A global analysis of the observed abundances shows that the markedly different chemical compositions of the kinematically and spatially distinct Orion subsources may be interpreted in the framework of an evolving, initially quiescent, gas-phase chemistry influenced by the process of massive star formation. The chemical composition of the extended Orion cloud complex is similar to that found in a number of other objects, but the central regions of OMC-1 have had their chemistry selectively altered by the radiation and high-velocity outflow from the young stars embedded deep within the interior of the molecular cloud. Specifically, the extended ridge clouds are inferred to have a low (subsolar) gas-phase oxygen content from the prevalence of reactive carbon-rich species like CN, CCH, and C 3 H 2 also found in more truly quiescent objects such as TMC-1. The similar abundances of these and other simple species in clouds like OMC-1, Sgr B2, and TMC-1 lend support to gas-phase ion-molecule models of interstellar chemistry, but grain processes may also play a significant role in maintaining the overall chemical balance in such regions through selective depletion mechanisms and grain mantle processing. In contrast, the chemical compositions of the more turbulent plateau and hot core components of OMC-1 are dominated by high-temperature, shock-induced gas and grain surface neutral-neutral reaction processes. The high silicon/sulfur oxide and water content of the plateau gas is best modeled by fast shock disruption of smaller grain cores to release the more refractory elements followed by a predominantly neutral chemistry in the cooling postshock regions, while a more passive release of grain mantle products driven towar...
We present 350 µm observations of 15 Chapman et al. submillimeter galaxies (SMGs) with radio counterparts and optical redshifts. We detect 12 and obtain sensitive upper limits for three, providing direct, precise measurements of their far-infrared luminosities and characteristic dust temperatures. With these, we verify the linear radio-far-infrared correlation at redshifts of z ∼ 1-3 and luminosities of 10 11 -10 13 L ⊙ , with a power-law index of 1.02 ± 0.12 and rms scatter of 0.12 dex. However, either the correlation constant q or the dust emissivity index β is lower than measured locally. The best fitting q ≃ 2.14 is consistent with SMGs being predominantly starbust galaxies, without significant AGN contribution, at far-infrared wavelengths. Gas-to-dust mass ratios are estimated at 54 +14 −11 κ 850 µm /0.15 m 2 kg −1 , depending on the absoption efficiency κ ν , with intrinsic dispersion ≃ 40% around the mean value. Dust temperatures consistent with 34.6 ± 3 K (β/1.5) −0.71 , at z ∼ 1.5-3.5, suggest that far-infrared photometric redshifts may be viable, and perhaps accurate to 10% dz/ (1 + z), for up to 80% of the SMG population in this range, if the above temperature characterizes the full range of SMGs. However, observed temperature evolution of T d ∝ (1 + z) is also plausible and could result from selection effects. From the observed luminosity-temperature (L-T ) relation, L ∝ T 2.82±0.29 obs , we derive scaling relations for dust mass versus dust temperature, and we identify expressions to inter-relate the observed quantities. These suggest that measurements at a single wavelength, in the far-infrared, submillimeter or radio wave bands, might constrain dust temperatures and far-infrared luminosities for most SMGs with redshifts at z ∼ 0.5-4.
Molybdenum deficiencies are considered rare in most agricultural cropping areas; however, the phenotype is often misdiagnosed and attributed to other downstream effects associated with its role in various enzymatic redox reactions. Molybdenum fertilization through foliar sprays can effectively supplement internal molybdenum deficiencies and rescue the activity of molybdoenzymes. The current understanding on how plants access molybdate from the soil solution or later redistribute it once in the plant is still unclear; however, plants have similar physiological molybdenum transport phenotypes to those found in prokaryotic systems. Thus, careful analysis of existing prokaryotic molybdate transport mechanisms, as well as a re-examination of know anion transport mechanisms present in plants, will help to resolve how this important trace element is accumulated.
We present a high-sensitivity spectral line survey of the high-mass star-forming region Orion KL in the 325-360 GHz frequency band. The survey was conducted at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. The sensitivity achieved is typically 0.1-0.5 K and is limited mostly by the sideband separation method utilized. We find 717 resolvable features consisting of 1004 lines, among which 60 are unidentified. The identified lines are due to 34 species and various isotopomers. Most of the unidentified lines are weak, and many of them most likely due to isotopomers or vibrationally or torsionally excited states of known species with unknown line frequencies, but a few reach the 2-5 K level. No new species have been identified, but we were able to strengthen evidence for the identification of ethanol in Orion and found the first nitrogen sulfide line in this source. The molecule dominating the integrated line emission is S02, which emits twice the intensity of CO, followed by SO, which is only slightly stronger than CO. In contrast, the largest number of lines is emitted from heavy organic rotors like HCOOCH3, CH3CH2CN, and CH3OCH3, but their contribution to the total flux is unimportant. CH3OH is also very prominent, both in the number of lines and in integrated flux. An interesting detail of this survey is the first detection of vibrationally excited HCN in the v2 = 2 state, 2000 K above ground. Clearly this is a glimpse into the very inner part of the Orion hot core.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.