Predicting rolling bearing fatigue life requires knowledge of the three-dimensional (3D) stress fields in the roller and raceway near the lubricated contact. Owing to the increasingly severe operating conditions, the effect of localized features such as surface roughness, subsurface inclusions, and even the crystallographic structure of the material becomes important. Achieving such detail requires (locally) extremely dense gridding in simulations, which in 3D is a major challenge. Multigrid techniques have been demonstrated to be capable of solving such problems. In this study, multigrid techniques are shown to further increase the efficiency of the solution by exploiting local grid refinement while maintaining the simplicity of a uniform discretization. This is achieved by employing increasingly finer grids only locally, where the highest resolution is required. Results are presented for dry contact and elastohydrodynamically lubricated contact cases, circular as well as elliptic, with varying crystallographic structure, and with surface roughness. The results show that the developed algorithm is very well suited for detailed analysis, with also excellent prospects for computational diagnostics involving actual material crystallographic structure from electron backscatter diffraction measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.