Clear cell renal cell carcinoma (ccRCC), the most frequent form of kidney cancer1, is characterized by elevated glycogen and fat deposition2. These consistent metabolic alterations are associated with normoxic stabilization of hypoxia inducible factors (HIFs)3, secondary to von hippel-lindau (VHL) mutations that occur in over 90% of ccRCC tumours4. However, kidney-specific VHL deletion in mice fails to elicit ccRCC-specific metabolic phenotypes and tumour formation5, suggesting that additional mechanisms are essential. Recent large-scale sequencing analyses revealed loss of several chromatin remodelling enzymes in a subset of ccRCC (polybromo 1 [PBRM1] ~40%, SET domain containing 2 [SETD2] ~15%, BRCA1 associated protein-1 [BAP1] ~15%, etc.)6–9, indicating that epigenetic perturbations are likely important contributors to the natural history of this disease. Here we utilized an integrative approach comprising pan-metabolomic profiling and metabolic gene set analysis, and determined that the gluconeogenic enzyme fructose-1, 6-bisphosphatase 1 (FBP1)10 is uniformly depleted in over six hundred ccRCC tumours examined. Importantly, the human FBP1 locus resides on chromosome 9q22, whose loss is associated with poor prognosis for ccRCC patients11. Our data further indicate that FBP1 inhibits ccRCC progression through two distinct mechanisms: 1) FBP1 antagonizes glycolytic flux in renal tubular epithelial cells, the presumptive ccRCC cell of origin12, thereby inhibiting a potential “Warburg effect”13,14, and 2) in pVHL-deficient ccRCC cells, FBP1 restrains cell proliferation, glycolysis, and the pentose phosphate pathway in a catalytic activity-independent manner, by inhibiting nuclear HIF function via direct interaction with the HIF “inhibitory domain”. This unique dual function of the FBP1 protein explains its ubiquitous loss in ccRCC, distinguishing FBP1 from previously-identified tumour suppressors (PBRM1, SETD2, BAP1, etc.) which are not consistently mutated in all tumours6,7,15.
PURPOSE To develop an evidence-based clinical practice guideline to assist in clinical decision making for patients with advanced hepatocellular carcinoma (HCC). METHODS ASCO convened an Expert Panel to conduct a systematic review of published phase III randomized controlled trials (2007-2020) on systemic therapy for advanced HCC and provide recommended care options for this patient population. RESULTS Nine phase III randomized controlled trials met the inclusion criteria. RECOMMENDATIONS Atezolizumab + bevacizumab (atezo + bev) may be offered as first-line treatment of most patients with advanced HCC, Child-Pugh class A liver disease, Eastern Cooperative Oncology Group Performance Status (ECOG PS) 0-1, and following management of esophageal varices, when present, according to institutional guidelines. Where there are contraindications to atezolizumab and/or bevacizumab, tyrosine kinase inhibitors sorafenib or lenvatinib may be offered as first-line treatment of patients with advanced HCC, Child-Pugh class A liver disease, and ECOG PS 0-1. Following first-line treatment with atezo + bev, and until better data are available, second-line therapy with a tyrosine kinase inhibitor may be recommended for appropriate candidates. Following first-line therapy with sorafenib or lenvatinib, second-line therapy options for appropriate candidates include cabozantinib, regorafenib for patients who previously tolerated sorafenib, or ramucirumab (for patients with α-fetoprotein ≥ 400 ng/mL), or atezo + bev where patients did not have access to this option as first-line therapy. Pembrolizumab or nivolumab are also reasonable options for appropriate patients following sorafenib or lenvatinib. Consideration of nivolumab + ipilimumab as an option for second-line therapy and third-line therapy is discussed. Further guidance on choosing between therapy options is included within the guideline. Additional information is available at www.asco.org/gastrointestinal-cancer-guidelines .
Fructose consumption has risen dramatically in recent decades due to use of sucrose and high fructose corn syrup in beverages and processed foods 1 , contributing to rising rates of obesity and non-alcoholic fatty liver disease (NAFLD) 2 – 4 . Fructose intake triggers hepatic de novo lipogenesis (DNL) 4 – 6 , which is initiated from acetyl-CoA. ATP-citrate lyase (ACLY) cleaves cytosolic citrate to generate acetyl-CoA and is upregulated upon carbohydrate consumption 7 . Ongoing clinical trials are pursuing ACLY inhibition for treatment of metabolic diseases 8 . Nevertheless, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unproven. Here we show, using in vivo isotope tracing, that liver-specific deletion of Acly fails to suppress fructose-induced DNL in mice. Dietary fructose is converted by the gut microbiome into acetate 9 , which supplies lipogenic acetyl-CoA independently of ACLY 10 . Depletion of the microbiome or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses conversion of a fructose bolus into hepatic acetyl-CoA and fatty acids, bypassing ACLY. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage and microbial acetate contribute to lipogenesis. The DNL transcriptional program, on the other hand, is activated in response to fructose in a manner independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism regulating hepatic DNL, in which fructolysis within hepatocytes provides a signal to promote DNL gene expression, while microbial acetate generation feeds lipogenic acetyl-CoA pools.
The genetic transfer of antigen receptors is a powerful approach to rapidly generate tumor-specific T lymphocytes. Unlike the physiologic T-cell receptor, chimeric antigen receptors (CARs) encompass immunoglobulin variable regions or receptor ligands as their antigen recognition moiety, thus permitting T cells to recognize tumor antigens in the absence of human leukocyte antigen expression. CARs encompassing the CD3Z chain as their activating domain induce T-cell proliferation in vitro, but limited survival. The requirements for genetically targeted T cells to function in vivo are less well understood. We have, therefore, established animal models to assess the therapeutic efficacy of human peripheral blood T lymphocytes targeted to prostate-specific membrane antigen (PSMA), an antigen expressed in prostate cancer cells and the neovasculature of various solid tumors. In vivo specificity and antitumor activity were assessed in mice bearing established prostate adenocarcinomas, using serum prostate-secreted antigen, magnetic resonance, computed tomography, and bioluminescence imaging to investigate the response to therapy. In three tumor models, orthotopic, s.c., and pulmonary, we show that PSMA-targeted T cells effectively eliminate prostate cancer. Tumor eradication was directly proportional to the in vivo effector-to-tumor cell ratio. Serial imaging further reveals that the T cells must survive for at least 1 week to induce durable remissions. The eradication of xenogeneic tumors in a murine environment shows that the adoptively transferred T cells do not absolutely require in vivo costimulation to function. These results thus provide a strong rationale for undertaking phase I clinical studies to assess PSMA-targeted T cells in patients with metastatic prostate cancer. (Cancer Res 2005; 65(19): 9080-8)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.