We describe system verification tests and early science results from the pulsar processor (PTUSE) developed for the newly commissioned 64-dish SARAO MeerKAT radio telescope in South Africa. MeerKAT is a high-gain ( ${\sim}2.8\,\mbox{K Jy}^{-1}$ ) low-system temperature ( ${\sim}18\,\mbox{K at }20\,\mbox{cm}$ ) radio array that currently operates at 580–1 670 MHz and can produce tied-array beams suitable for pulsar observations. This paper presents results from the MeerTime Large Survey Project and commissioning tests with PTUSE. Highlights include observations of the double pulsar $\mbox{J}0737{-}3039\mbox{A}$ , pulse profiles from 34 millisecond pulsars (MSPs) from a single 2.5-h observation of the Globular cluster Terzan 5, the rotation measure of Ter5O, a 420-sigma giant pulse from the Large Magellanic Cloud pulsar PSR $\mbox{J}0540{-}6919$ , and nulling identified in the slow pulsar PSR J0633–2015. One of the key design specifications for MeerKAT was absolute timing errors of less than 5 ns using their novel precise time system. Our timing of two bright MSPs confirm that MeerKAT delivers exceptional timing. PSR $\mbox{J}2241{-}5236$ exhibits a jitter limit of $<4\,\mbox{ns h}^{-1}$ whilst timing of PSR $\mbox{J}1909{-}3744$ over almost 11 months yields an rms residual of 66 ns with only 4 min integrations. Our results confirm that the MeerKAT is an exceptional pulsar telescope. The array can be split into four separate sub-arrays to time over 1 000 pulsars per day and the future deployment of S-band (1 750–3 500 MHz) receivers will further enhance its capabilities.
We report the findings of an upgraded Giant Metrewave Radio Telescope (uGMRT) observing campaign for FRB 180916.J0158+65, which was recently found to show a 16.35-d periodicity of its active cycle. We observed the source at 550–750 MHz for ∼2 h during each of three successive cycles at the peak of its expected active period. We find 0, 12 and 3 bursts, respectively, implying a highly variable bursting rate even within the active phase. We consistently detect faint bursts with spectral energies only an order of magnitude higher than the Galactic burst source SGR 1935+2154. The times of arrival of the detected bursts rule out many possible aliased solutions, strengthening the findings of the 16.35-d periodicity. A periodicity search over a short time-scale returned no highly significant candidates. Two of the beamformer-detected bursts were bright enough to be clearly detected in the imaging data, achieving subarcsec localization, and proving to be a proof-of-concept for FRB imaging with the GMRT. We provide a 3σ upper limit of the persistent radio flux density at 650 MHz of 66 μJy, which, combined with the European VLBI Network and Very Large Array limits at 1.6 GHz, further constrains any potential radio counterpart. These results demonstrate the power of the uGMRT for providing targeted observations to detect and localize known repeating FRBs.
We describe the ongoing Relativistic Binary programme (RelBin), a part of the MeerTime large survey project with the MeerKAT radio telescope. RelBin is primarily focused on observations of relativistic effects in binary pulsars to enable measurements of neutron star masses and tests of theories of gravity. We selected 25 pulsars as an initial high priority list of targets based on their characteristics and observational history with other telescopes. In this paper, we provide an outline of the programme, present polarisation calibrated pulse profiles for all selected pulsars as a reference catalogue along with updated dispersion measures. We report Faraday rotation measures for 24 pulsars, twelve of which have been measured for the first time. More than a third of our selected pulsars show a flat position angle swing confirming earlier observations. We demonstrate the ability of the Rotating Vector Model (RVM), fitted here to seven binary pulsars, including the Double Pulsar (PSR J0737−3039A), to obtain information about the orbital inclination angle. We present a high time resolution light curve of the eclipse of PSR J0737−3039A by the companion’s magnetosphere, a high-phase resolution position angle swing for PSR J1141−6545, an improved detection of the Shapiro delay of PSR J1811−2405, and pulse scattering measurements for PSRs J1227−6208, J1757−1854, and J1811−1736. Finally, we demonstrate that timing observations with MeerKAT improve on existing data sets by a factor of, typically, 2–3, sometimes by an order of magnitude.
We have used the central 44 antennas of the new 64-dish MeerKAT radio telescope array to conduct a deep search for new pulsars in the core of nine globular clusters. This has led to the discovery of eight new millisecond pulsars in six different clusters. Two new binaries, 47 Tuc ac and 47 Tuc ad, are eclipsing “spiders”, featuring compact orbits (≲ 0.32 days), very low-mass companions and regular occultations of their pulsed emission. The other three new binary pulsars (NGC 6624G, M62G, and Ter 5 an) are in wider (>0.7 days) orbits, with companions that are likely to be white dwarfs or neutron stars. NGC 6624G has a large eccentricity of e ≃ 0.38, which enabled us to detect the rate of advance of periastron. This suggests that the system is massive, with a total mass of Mtot = 2.65 ± 0.07 M⊙. Likewise, for Ter 5 an, with e ≃ 0.0066, we obtain Mtot = 2.97 ± 0.52 M⊙. The other three new discoveries (NGC 6522D, NGC 6624H and NGC 6752F) are faint isolated pulsars. Finally, we have used the whole MeerKAT array and synthesized 288 beams, covering an area of ∼2 arcmin in radius around the center of NGC 6624. This has allowed us to localize many of the pulsars in the cluster, demonstrating the beamforming capabilities of the TRAPUM software backend and paving the way for the upcoming MeerKAT globular cluster pulsar survey.
Context. Globular clusters (GCs) contain a unique pulsar population, with many exotic systems that can form only in their dense stellar environments. Such systems are potentially very interesting for new tests of gravity theories and neutron-star mass measurements. Aims. The leap in sensitivity of the upgraded Giant Metrewave Radio Telescope (uGMRT) in India, especially at low radio frequencies (< 1 GHz), motivated a new search for radio pulsars in a group of eight southern GCs. We aim to image these clusters in order to have independent measurements of the radio fluxes of known pulsars and the identification of bright radio sources that could be pulsars missed by pulsation search pipelines due to their inherent limitations. Methods. The observations were conducted at 650 MHz (Band 4 receivers) on Terzan 5, NGC 6441, NGC 6440, and NGC 6544, and at 400 MHz (Band 3 receivers) on NGC 6652, NGC 6539, NGC 1851, and M 30. Segmented acceleration and jerk searches were performed on the data. Simultaneously, we obtained interferometric data on these clusters, which were later converted into radio images.Results. We discovered PSR J1835−3259B, a 1.83-ms pulsar in NGC 6652; this is in a near-circular wide orbit of 28.7-hr with an unidentified low-mass (∼ 0.2) companion, likely a helium white dwarf. We derived a ten-year timing solution for this system. We also present measurements of scattering, flux densities, and spectral indices for some of the previously known pulsars in these GCs. Conclusions. A significant fraction of the pulsars in these clusters have steep spectral indices. Additionally, we detected eight radio point sources not associated with any known pulsar positions in the radio images. There are four newly identified sources, three in NGC 6652 and one in NGC 6539, as well as one previously identified source in NGC 1851, NGC 6440, NGC 6544, and Terzan 5. Surprisingly, our images show that our newly discovered pulsar, PSR J1835−3259B, is the brightest pulsar in all GCs we have imaged; like other pulsars with broad profiles (Terzan 5 C and O), its flux density in the radio images is much larger than in its pulsations. This indicates that their pulsed emission is only a fraction of their total emission. The detection of radio sources outside the core radii but well within the tidal radii of these clusters show that future GC surveys should complement the search analysis by using the imaging capability of interferometers, and preferentially synthesise large number of search beams in order to obtain a larger field of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.