The E0 band gap energies and the lattice constants of zinc-blende Zn1−xMgxSe alloys grown by molecular beam epitaxy in the composition range of 0≤x≤0.95 are determined. A nonlinear dependence on the composition is observed for both the band-gap energies and the lattice con- stants of the ternary alloys. To our knowledge this is an initial report of a bowing in the lattice constant of a ternary II–VI alloy. Considering the bowings, the band-gap energy and the lattice constant of zinc-blende MgSe are extrapolated to be about 4.0 eV and 5.91 Å, respectively.
Beryllium chalcogenides have a much higher degree of covalency than other II–VI compounds. Be containing ZnSe based mixed crystals show a significant lattice hardening effect. In addition, they introduce substantial additional degrees of freedom for the design of wide gap II–VI heterostructures due to their band gaps, lattice constants, and doping behavior. Therefore, these compounds seem to be very interesting materials for short wavelength laser diodes. Here, we report on the first fabrication of laser diodes based on the wide band gap II–VI semiconductor compound BeMgZnSe. The laser diodes emit at a wavelength of 507 nm under pulsed current injection at 77 K, with a threshold current of 80 mA, corresponding to 240 A/cm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.