Multilayer electroactive polymer actuators consisting of polypyrrole films electropolymerized on a passive polymer membrane core have been harnessed as a source of simple actuation. As an integral component of the actuator, the membrane plays a vital role in the transport of ionic species and largely dictates the stiffness of the layered configuration, yet in past studies the specification of the membrane has remained largely arbitrary. In this investigation, we use quasi-static and dynamic mechanical analysis to investigate the impact of the mechanical properties of the membrane on the actuation response of polypyrrole-based trilayer bending actuators. Candidate materials with distinctly varied microcellular morphologies are identified and include polyvinylidene difluoride, nylon, and nitrocellulose. The quasi-static stress-strain response and the frequency-dependent viscoelastic nature of the candidates are then evaluated. On the basis of mechanical properties these results indicate that polyvinylidene difluoride membranes are superior to the other candidates for application as trilayer actuator cores. Bis(trifluoromethane)sulfonimide doped polypyrrole actuators with polyvinylidene difluoride cores and nylon cores are then fabricated under various synthesis conditions and their electromechanical actuation behavior is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.