<p><strong>Abstract.</strong> There is an ongoing discussion whether <i>n</i>-alkane biomarkers – and organic matter (OM) from loess in general – reflect a syn-sedimentary paleoenvironmental and paleoclimate signal or whether they are significantly a post-sedimentary feature contaminated by root-derived OM. We present first radiocarbon data for the <i>n</i>-alkane fraction of lipid extracts and for the first time luminescence ages for the Middle to Late Weichselian loess-paleosol sequence of Gleina in Saxony, Germany. Comparison of these biomarker ages with sedimentation ages as assessed by optically stimulated luminescence (OSL) dating shows that one <i>n</i>-alkane sample features a syn-sedimentary age (<sup>14</sup>C: 29.2 ± 1.4 kyr cal BP versus OSL: 27.3 ± 3.0 kyr). By contrast, the <sup>14</sup>C ages derived from the other <i>n</i>-alkane samples are clearly younger (20.3 ± 0.7 kyr cal BP, 22.1 ± 0.7 kyr cal BP and 29.8 ± 1.4 kyr cal BP) than the corresponding OSL ages (26.6 ± 3.1 kyr, 32.0 ± 3.5 kyr and 45.6 ± 5.3 kyr). This finding suggests that a post-sedimentary <i>n</i>-alkane contamination presumably by roots has occurred. <br><br> In order to estimate the post-sedimentary <i>n</i>-alkane contamination more quantitatively, we applied a <sup>14</sup>C mass balance calculation based on the measured pMC (percent modern carbon) values, the calculated syn-sedimentary pMC values and pMC values suspected to reflect likely time points of post-sedimentary contamination (current, modern, 3 kyr, 6 kyr and 9 kyr). Accordingly, current and modern root-contamination would account for up to 7%, a 3 kyr old root-contamination for up to 10%, and an Early and Middle Holocene root-contamination for up to 20% of the total sedimentary <i>n</i>-alkane pool. <br><br> We acknowledge and encourage that these first radiocarbon results need further confirmation both from other loess-paleosol sequences and for different biomarkers, e.g. carboxylic acids or alcohols as further lipid biomarkers.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.