The nuclear spin polarization of noble gases can be enhanced strongly by laser optical pumping followed by electron-nuclear polarization transfer. Direct optical pumping of metastable 3He atoms has been shown to produce enormous polarization on the order of 0.4-0.6. This is about 10(5) times larger than the polarization of water protons at thermal equilibrium used in conventional MRI. We demonstrate that hyperpolarized 3He gas can be applied to nuclear magnetic resonance imaging of organs with air-filled spaces in humans. In vivo 3He MR experiments were performed in a whole-body MR scanner with a superconducting magnet ramped down to 0.8 T. Anatomical details of the upper respiratory tract and of the lungs of a volunteer were visualized with the FLASH technique demonstrating the potential of the method for fast imaging of airways in the human body and for pulmonary ventilation studies.
Inhalation of hyperpolarized (3)He allows magnetic resonance imaging (MRI) of ventilated airspaces. (3)He hyperpolarization decays more rapidly when interacting with paramagnetic O(2). We describe a method for in vivo determination of intrapulmonary O(2) concentrations ([O(2)]) based on MRI analysis of the fate of measured amounts of inhaled hyperpolarized (3)He in imaged regions of the lung. Anesthetized pigs underwent controlled normoventilation in a 1.5-T MRI unit. The inspired O(2) fraction was varied to achieve different end-tidal [O(2)] fractions (FET(O(2))). With the use of a specifically designed applicator, (3)He (100 ml, 35-45% polarized) was administered at a predefined time within single tidal volumes. During subsequent inspiratory apnea, serial two-dimensional images of airways and lungs were acquired. At least once in each animal studied, the radio-frequency excitation used for imaging was doubled at constant FET(O(2)). Signal intensity measurements in regions of interest of the animals' lungs (volume range, 54-294 cm(3)), taken at two different radio-frequency excitations, permitted calculation of [O(2)] in these regions of interest. The [O(2)] fractions in the regions of interest correlated closely with FET(O(2)) (R = 0.879; P < 0.0001). O(2)-sensitive (3)He-MRI may allow noninvasive study of regional distribution of ventilation and alveolar PO(2) in the lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.