Sydney estuary (Australia), like many urbanised waterways, is degraded due to an extended history of anthropogenic activity. Two major sources of contamination to this estuary are discharge by former shoreline industries and historic and contemporary catchment stormwater. The objectives of the present study were to document changes in shoreline land use from European settlement to the present day and determine the influence of this trend on the metal content of adjacent estuarine sediments. Temporal analysis of land use for seven time horizons between 1788 and 2010 showed rapid expansion of industry along much of the Sydney estuary foreshore soon after European settlement due to the benefits of easy and inexpensive access and readily available water for cooling and power. Shoreline industry attained maximum development in 1978 (32-km length) and declined rapidly to the present-day (9-km length) through redevelopment of industrial sites into medium- to high-density, high-value residential housing. Cores taken adjacent to 11 long-term industrial sites showed that past industrial practices contributed significantly to contamination of estuarine sediment. Subsurface metal concentrations were up to 35 times that of present-day surface sediment and over 100 times greater than natural background concentrations. Sedimentation rates for areas adjacent to shoreline industry were between 0.6 and 2.5 cm/year, and relaxation times were estimated at 50 to 100 years. Natural relaxation and non-disturbance of sediments may be the best management practice in most locations.
Sydney estuary has a long history of environmental degradation and is one of the most modified water ways in Australia due to a highly urbanised catchment (~77 %) and a high population (4.6 million). The objectives of the present study were to map historical land use change from European settlement (1788) to 2010 to determine catchment evolutionary pathways and to estimate catchment loading (total suspended solids, Cu, Pb and Zn) to the estuary over this period. Land use distribution in Sydney catchment, determined for seven time horizons over this period, indicated that a substantial increase in residential land use through subdivision of large estates and an increase in road area resulted in a marked increase in metal loading to Sydney estuary between 1892 and 1936. The decline in industrial activity from a maximum in 1978 (3.9 %) to 1.8 % in 2010 and the introduction of unleaded fuel during this time was accompanied by reduction in metal loading to the estuary. Land use time horizon maps enabled the creation of novel, ternary diagrams to represent temporal evolution in catchment land use. The 15 sub-catchments of Sydney estuary were combined into three major catchment categories, i.e., urban, dense urban and commercial. Present-day annual discharge of stormwater from the Sydney catchment was calculated to be 466,000 ML and annual loadings of total suspended sediment (TSS), Cu, Pb and Zn in tonnes were 49,239, 27, 37 and 57, respectively. Stormwater has superseded industry as the main source of anthropogenic metals to this estuary in recent times.
As coastal populations increase, considerable pressures are exerted on estuarine environments. Recently, there has been a trend towards the development and use of estuarine assessment schemes as a decision support tool in the management of these environments. These schemes offer a method by which complex environmental data is converted into a readily understandable and communicable format for informed decision making and effective distribution of limited management resources. Reliability and effectiveness of these schemes are often limited due to a complex assessment framework, poor data management and use of ineffective environmental indicators. The current scheme aims to improve reliability in the reporting of estuarine condition by including a concise assessment framework, employing high-value indicators and, in a unique approach, employing fuzzy logic in indicator evaluation. Using Sydney estuary as a case study, each of the 15 sub-catchment/sub-estuary systems were assessed using the current scheme. Results identified that poor sediment quality was a significant issue in Blackwattle/Rozelle Bay, Iron Cove and Hen and Chicken Bay while poor water quality was of particular concern in Duck River, Homebush Bay and the Parramatta River. Overall results of the assessment scheme were used to prioritise the management of each sub-catchment/sub-estuary assessed with Blackwattle/Rozelle Bay, Homebush Bay, Iron Cove and Duck River considered to be in need of a high priority management response. A report card format, using letter grades, was employed to convey the results of the assessment in a readily understood manner to estuarine managers and members of the public. Letter grades also provide benchmarking and performance monitoring ability, allowing estuarine managers to set improvement targets and assesses the effectiveness of management strategies. The current assessment scheme provides an effective, integrated and consistent assessment of estuarine health and provides an effective decision support tool to maximise the efficient distribution of limited management resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.