We investigate single-photon generation from individual self-assembled InGaAs quantum dots coupled to the guided optical mode of a GaAs photonic crystal waveguide. By performing confocal microscopy measurements on single dots positioned within the waveguide, we locate their positions with a precision better than 0:5 m. Time-resolved photoluminescence and photon autocorrelation measurements are used to prove the single-photon character of the emission into the propagating waveguide mode. The results obtained demonstrate that such nanostructures can be used to realize an on-chip, highly directed singlephoton source with single-mode spontaneous emission coupling efficiencies in excess of À $ 85% and the potential to reach maximum emission rates >1 GHz.
Parametric downconversion (PDC) in semiconductor Braggreflection waveguides (BRW) is routinely exploited for photon-pair generation in the telecommunication range. Contrary to many conventional PDC sources, BRWs offer possibilities to create spectrally broadband but nevertheless indistinguishable photon pairs in orthogonal polarizations that simultaneously incorporate high frequency entanglement. We explore the characteristics of copropagating twin beams created in a type-II ridge BRW. Our PDC source is bright and efficient, which serves as a benchmark of its performance and justifies its exploitation for further use in quantum photonics. We then examine the coalescence of the twin beams and investigate the effect of their inevitable multiphoton contributions on the observed photon bunching. Our results show that BRWs have a great potential for producing broadband indistinguishable photon pairs as well as multi-photon states.
Based on the interaction between different spatial modes, semiconductor Bragg-reflection waveguides (BRWs) provide a highly functional platform for non-linear optics. For achieving any desired quantum optical functionality, we must control and engineer the properties of each spatial mode. To reach this purpose we extend the Fabry-Perot technique and achieve a detailed linear optical characterization of dispersive multimode semiconductor waveguides. With this efficient broadband spectral method we gain direct experimental access to the relevant modes of our BRWs and determine their group velocities. Furthermore, we show that our waveguides have lower than expected loss coefficients. This renders them suitable for integrated quantum optics applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.