We compared the influence of aerobic and resistance exercise on cardiac remodelling, physical capacity and skeletal muscle oxidative stress in rats with MI-induced heart failure. Three months after MI induction, Wistar rats were divided into four groups: Sham; sedentary MI (S-MI); aerobic exercised MI (A-MI); and resistance exercised MI (R-MI). Exercised rats trained three times a week for 12 weeks on a treadmill or ladder. Statistical analysis was performed by ANOVA or Kruskal-Wallis test.Functional aerobic capacity was greater in A-MI and strength gain higher in R-MI.Echocardiographic parameters did not differ between infarct groups. Reactive oxygen species production, evaluated by fluorescence, was higher in S-MI than Sham, and lipid hydroperoxide concentration was lower in A-MI than the other groups.Glutathione peroxidase activity was higher in A-MI than S-MI and R-MI. Superoxide dismutase was lower in S-MI than Sham and R-MI. Gastrocnemius cross-sectional area, satellite cell activation and expression of the ubiquitin-proteasome system proteins did not differ between groups. In conclusion, aerobic exercise and resistance exercise improve functional capacity and maximum load carrying, respectively, without changing cardiac remodelling in infarcted rats. In the gastrocnemius, infarction increases oxidative stress and changes antioxidant enzyme activities. Aerobic exercise reduces oxidative stress and attenuates superoxide dismutase and glutathione peroxidase changes.
Background Physical exercise has been highlighted as an important non-pharmacological therapy for prevention and treatment of several cardiovascular diseases. However, its effects on hearts with minor cardiac remodeling are not clear. Purpose To evaluate the influence of aerobic physical exercise on functional capacity, cardiac structure, left ventricular (LV) function, and gene expression of NADPH oxidase subunits in rats with small-sized myocardial infarction (MI). Methods Three months after MI induction, Wistar rats were divided into three groups: Sham; sedentary MI (MI-SED); and aerobic exercised MI (MI-EA). Rats exercised three times a week for 12 weeks on a treadmill. Echocardiogram was performed before and after experimental period. Infarction size and cardiomyocyte diameters were evaluated by histology. Gene expression was assessed by RT-PCR. Results Only rats with MI size lower than 30% of LV total area were included in the study. Functional capacity was higher in MI-AE than the other groups. Infarction size did not differ between groups. Infarcted rats had increased LV diastolic and systolic diameter, left atrial diameter, and LV mass, with systolic dysfunction. LV diastolic posterior wall thickness was higher in MI-AE than Sham, and relative wall thickness was lower in MI-SED than MI-AE and Sham groups. Cardiomyocyte diameter was smaller in infarcted groups than Sham. Myocardial gene expression of the NADPH oxidase subunits NOX2, NOX4, p22phox, and p47phox did not differ between groups. Conclusion Small-sized myocardial infarction changes cardiac structures and left ventricular systolic function. Late aerobic physical exercise improves functional capacity and cardiac remodeling by preserving left ventricular geometry. NADPH oxidase subunits gene expression is not involved in cardiac remodeling or modulated by aerobic exercise in rats with small myocardial infarction. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): CNPq; CAPES
Although current guidelines recommend resistance exercise in combination with aerobic training to increase muscle strength and prevent skeletal muscle loss during cardiac remodeling, its effects are not clear. In this study, we evaluated the effects of resistance training on cardiac remodeling and the soleus muscle in long-term myocardial infarction (MI) rats. Methods: Three months after MI induction, male Wistar rats were assigned to Sham (n = 14), MI (n = 9), and resistance exercised MI (R-MI, n = 13) groups. The rats trained three times a week for 12 weeks on a climbing ladder. An echocardiogram was performed before and after training. Protein expression of the insulin-like growth factor (IGF)-1/protein kinase B (Akt)/rapamycin target complex (mTOR) pathway was analyzed by Western blot. Results: Mortality rate was higher in MI than Sham; in the R-MI group, mortality rate was between that in MI and Sham and did not differ significantly from either group. Exercise increased maximal load capacity without changing cardiac structure and left ventricular function in infarcted rats. Infarction size did not differ between infarcted groups. Catalase activity was lower in MI than Sham and glutathione peroxidase lower in MI than Sham and R-MI. Protein expression of p70S6K was lower in MI than Sham and p-FoxO3 was lower in MI than Sham and R-MI. Energy metabolism did not differ between groups, except for higher phosphofrutokinase activity in R-MI than MI. Conclusion: Resistance exercise is safe and increases muscle strength regardless structural and functional cardiac changes in myocardial-infarcted rats. This exercise modality attenuates soleus glycolytic metabolism changes and improves the expression of proteins required for protein turnover and antioxidant response.
Introduction: Exercise is an important therapeutic strategy for preventing and treating myocardial infarction (MI)-induced cardiac remodeling and heart failure. However, the myocardial effects of resistance exercise on infarcted hearts are not completely established. In this study, we investigated the effects of resistance exercise on structural, functional, and molecular cardiac alterations in infarcted rats. Methods: Three months after MI induction or simulated surgery, Wistar rats were assigned into three groups: Sham (n = 14); MI (n = 9); and exercised MI (MI-Ex, n = 13). Exercised rats performed, 3 times a week for 12 weeks, four climbs on a ladder with progressive loads. Cardiac structure and left ventricle (LV) function were analyzed by echocardiogram. Myocyte diameters were evaluated in hematoxylin- and eosin-stained histological sections as the smallest distance between borders drawn across the nucleus. Myocardial energy metabolism, lipid hydroperoxide, malondialdehyde, protein carbonylation, and antioxidant enzyme activities were evaluated by spectrophotometry. Gene expressions of NADPH oxidase subunits were evaluated by RT-PCR. Statistical analyses were performed using ANOVA and Tukey or Kruskal–Wallis and Dunn’s test. Results: Mortality did not differ between the MI-Ex and MI groups. MI had dilated left atrium and LV, with LV systolic dysfunction. Exercise increased the maximum load-carrying capacity, with no changes in cardiac structure or LV function. Myocyte diameters were lower in MI than in Sham and MI-Ex. Lactate dehydrogenase and creatine kinase activity were lower in MI than in Sham. Citrate synthase and catalase activity were lower in MI and MI-Ex than in Sham. Lipid hydroperoxide concentration was lower in MI-Ex than in MI. Nox2 and p22phox gene expressions were higher in MI-Ex than in Sham. Gene expression of Nox4 was higher in MI and MI-Ex than in Sham, and p47phox was lower in MI than in Sham. Conclusion: Late resistance exercise was safe in infarcted rats. Resistance exercise improved maximum load-carrying capacity, reduced myocardial oxidative stress, and preserved myocardial metabolism, with no changes in cardiac structure or left ventricle function in infarcted rats.
Introduction Exercise is an important therapeutic strategy for heart failure (HF). However, the myocardial effects of resistance exercise during HF are not completely understood. In this study, we investigated the influence of resistance exercise on cardiac remodeling and molecular myocardial changes of rats with myocardial infarction (MI)-induced HF. Methods Three months after MI induction or simulated surgery, Wistar rats were divided into three groups: Sham (n=14); MI (n=9); and MI subjected to resistance exercise (MI-R, n=13). Exercised rats trained 3 times a week during 12 weeks performing four climbs in a ladder with progressive loads. Cardiac structure and left ventricular function were assessed by echocardiogram. Myocyte diameters were measured in histological sections. Energy metabolism, lipid hydroperoxide, antioxidant enzymes activity, malondialdehyde, and protein carbonylation were evaluated by spectrophotometry. NADPH oxidase subunits (Nox2, Nox4, p22phox and p47phox) gene expression was assessed by RT-PCR. Statistical analysis: ANOVA and Tukey test or Dunn's test. Results Mortality did not differ between MI-R and MI groups. MI-R and MI presented dilated left atrium and left ventricle with systolic and diastolic dysfunction. Exercise improved maximum carrying load with no changes in cardiac structure or left ventricle function. Myocyte diameter was lower in MI than Sham and MI-R. Lactate dehydrogenase and creatine kinase activities were lower in MI than Sham. Activity of citrate synthase and catalase was lower in MI and MI-R than Sham. Lipid hydroperoxide concentration was lower in MI-R than MI. Nox2 and p22phox gene expression was higher in MI-R than Sham. Gene expression of Nox4 was higher in both infarcted groups and gene expression of p47phox was lower in MI than Sham. Conclusion Resistance exercise is safe and well tolerated by infarcted rats. Exercise increases maximum carrying load and reduces myocardial oxidative stress with no changes in cardiac structure or left ventricle function of infarcted rats. Funding Acknowledgement Type of funding sources: Public Institution(s). Main funding source(s): CNPq - National Council for Scientific and Technological Development
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.