The RM (RM stands for the pristine clay) collected from sites in the Naima-Tiaret-Algeria and its purified phase TM (TM stands for the treated clay) were characterized using XRF, XRD, FT−IR, SEM−EDX, and DC electrical conductivity techniques. The as-prepared clays were used as potential adsorbents for the removal of Cu2+ and Zn2+ metals ions. Highly purified clay TM, exhibiting a basal, spacing of 25.83 Å and CEC of 51 meq/100 g, was obtained. The type of interstratified I/M in the studied sites is S=1, based on the calculation method of Watanabe. The percentage of illite type S=1 is between 80−85% illite. The adsorption equilibrium was established in 60 min with the capacities of 28.57 and 24.39 mg/g for Cu2+ onto RM, 32.25 and 4.95 mg/g for Zn2+ in the presence of TM. D-R isotherm model was more suitable with the adsorption process than Freundlich and Langmuir models suggesting the ion exchange nature of the retention mechanism in most cases (E > 8 kJ/mol). Pseudo second-order model best described the kinetics of adsorption process. The adsorption mechanism was mainly monitored by ion exchange mechanism between exchangeable interlayer cations (Na) in the interstratified I/M and Cu2+ or Zn2+ metals from aqueous matrix. Further, the release of H+ ions from the edge of the layer structure in acidic environments promote the adsorption of heavy metals onto the surfaces interstratified I/M clay soils via electrostatic attraction. Copyright © 2020 BCREC Group. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.