The present experiment was designed to determine a dosage regimen (dose, interval of administration) in the dog for nimesulide, a nonsteroidal anti-inflammatory drug with in vitro selectivity for the inhibition of cyclo-oxygenase 2 (Cox-2), using a pharmacokinetic/pharmacodynamic (PK/PD) approach. The PK/PD results were compared with those obtained using a classical dose titration study. In the PK/PD experiment, 11 dogs were subjected to Freund's adjuvant arthritis characterized by permanent hyperthermia. Nimesulide (5 mg/kg, oral route) was tested during the secondary phase of the inflammatory response. In the dose titration study, nimesulide (0, 3, 6 and 9 mg/kg, oral route) was tested in eight other dogs using a reversible urate crystal arthritis in a 4-period crossover design. Different PD endpoints (including lameness assessed by force plate and hyperthermia) were regularly measured during the PK/PD experiment, and plasma samples were obtained to determine the plasma nimesulide concentration. The data were modeled using an indirect effect model. The IC50 of nimesulide for lameness was 6.26 +/- 3.01 microg/mL, which was significantly higher than the EC50 value obtained for antipyretic effect (2.72 +/- 1.29 microg/mL). The ED50 estimated from the classical dose titration study were 1.34 mg/kg (lameness) and 3.0 mg/kg (skin temperature). The PK/PD parameters were used to simulate different dosage regimens (dose, interval of administration). The antipyretic and anti-inflammatory effects were calculated from the model for the recommended dosage regimen (5 mg/kg/24 h). It was apparent from this approach, that this dosage regimen enabled 76% of the theoretical maximal drug efficacy to be obtained for pyresis and 43% for lameness. It was concluded from the comparison of in vivo and in vitro IC50, that nimesulide is a potent NSAID for which some Cox-1 inhibition is required to obtain clinically relevant efficacy.
The pharmacokinetic properties and in vitro potency of nimesulide, a nonsteroidal anti-inflammatory drug (NSAID) were investigated in 8 or 10 dogs after intravenous (i.v.), intramuscular (i.m.) and oral (single and multiple dose) administrations at the nominal dose of 5 mg/kg. After i.v. administration, the plasma clearance was 15.3 +/- 4.2 mL/kg/h, the steady-state volume of distribution was low (0.18 +/- 0.011 L/kg) and the elimination half-life was 8.5 +/- 2.1 h. After i.m. administration, the terminal half-life was 14.0 +/- 5.3 h indicating a slow process of absorption with a maximum plasma concentration (6.1 +/- 1.5 microg/mL) at 10.9 +/- 2.1 h postadministration and the systemic bioavailability was 69 +/- 22%. After oral administration in fasted dogs, the maximal plasma concentration (10.1 +/- 2.7 microg/mL) was observed 6.1 +/- 1.6 h after drug administration, the plasma half-life was 6.2 +/- 1.9 h and the mean bioavailability was 47 +/- 12%. After daily oral administrations for 5 days, the average plasma concentration during the fifth dosage interval was 8.1 +/- 2.9 microg/mL and the overall bioavailability was 58 +/- 16%. The mean accumulation ratio was 1.27 +/- 0.4. In vitro nimesulide inhibitory potencies for cyclooxygenase (COX)-1 and COX-2 isoenzymes were determined using a whole blood assay. Canine clotting blood was used to test for inhibition of COX-1 activity and whole blood stimulated by lipopolysaccharide (LPS) was used to test for inhibition of COX-2 activity. The inhibitory concentration (IC50) for inhibition of COX-2 and COX-1 were 1.6 +/- 0.4 microM (0.49 +/- 0.12 microg/mL) and 20.3 +/- 2.8 microM (6.3 +/- 0.86 microg/mL) giving a nimesulide COX-1/COX-2 ratio of 12.99 +/- 3.41. It was concluded that at the currently recommended dosage regimen (5 mg/kg), the plasma concentration totally inhibits COX-2 and partly inhibits COX-1 isoenzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.