The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation γ-ray spectrometer. AGATA is based on the technique of γ-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a γ ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of γ-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer
This is an accepted version of a paper published in Nature. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.Citation for the published paper: Hinke, C., Boehmer, M., Boutachkov, P., Faestermann, T., Geissel, H. et al. (2012) "Superallowed Gamow-Teller decay of the doubly magic nucleus 100 Sn" Nature, 486 (7403): [341][342][343][344][345] Access to the published version may require subscription.
Neutron-rich isotopes around lead, beyond N=126, have been studied exploiting the fragmentation of an uranium primary beam at the FRS-RISING setup at GSI. For the first time β-decay half-lives of 219 Bi and 211,212,213 Tl isotopes have been derived. The half-lives have been extracted using a numerical simulation developed for experiments in high-background conditions. Comparison with state of the art models used in r-process calculations is given, showing a systematic underestimation of the experimental values, at variance from close-lying nuclei.
The neutron-rich lead isotopes, up to 216 Pb, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond 208 Pb. The shell model is nowadays able to provide a comprehensive view of the atomic nucleus [1]. It is a many-body theoretical framework, successful in explaining various features of the structure of nuclei, based on the definition of a restricted valence space where a suitable Hamiltonian can be diagonalized. This effective interaction originates from realistic two-body nuclear forces based on phenomenological nucleon-nucleon potentials, renormalized to be adapted to the truncated model space. Although the renormalization process can be treated in a rigorous mathematical way, the appearance of effective terms is often neglected in calculations, as a common but incorrect practice. The presence and relevance of these effective forces is well known also in other fields of physics, as for example in condensed matter studies [2]. Indeed, effective three-body terms appear already at the lower perturbation order [3]: PRL 109, 162502 (2012) P H Y S I C A L
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.