The decay characteristics and invariants of grid turbulence were investigated by means of laboratory experiments conducted in a wind tunnel. A turbulence-generating grid was installed at the entrance of the test section for generating nearly isotropic turbulence. Five grids (square bars of mesh sizes $M= 15$, 25 and 50 mm and cylindrical bars of mesh sizes $M= 10$ and 25 mm) were used. The solidity of all grids is $\sigma = 0. 36$. The instantaneous streamwise and vertical (cross-stream) velocities were measured by hot-wire anemometry. The mesh Reynolds numbers were adjusted to $R{e}_{M} = 6700$, 9600, 16 000 and 33 000. The Reynolds numbers based on the Taylor microscale $R{e}_{\lambda } $ in the decay region ranged from 27 to 112. In each case, the result shows that the decay exponent of turbulence intensity is close to the theoretical value of ${- }6/ 5$ (for the $M= 10~\mathrm{mm} $ grid, ${- }6(1+ p)/ 5\sim - 1. 32$) for Saffman turbulence. Here, $p$ is the power of the dimensionless energy dissipation coefficient, $A(t)\sim {t}^{p} $. Furthermore, each case shows that streamwise variations in the integral length scales, ${L}_{uu} $ and ${L}_{vv} $, and the Taylor microscale $\lambda $ grow according to ${L}_{uu} \sim 2{L}_{vv} \propto {(x/ M- {x}_{0} / M)}^{2/ 5} $ (for the $M= 10~\mathrm{mm} $ grid, ${L}_{uu} \propto {(x/ M- {x}_{0} / M)}^{2(1+ p)/ 5} \sim {(x/ M- {x}_{0} / M)}^{0. 44} $) and $\lambda \propto {(x/ M- {x}_{0} / M)}^{1/ 2} $, respectively, at $x/ M\gt 40{\unicode{x2013}} 60$ (depending on the experimental conditions, including grid geometry), where $x$ is the streamwise distance from the grid and ${x}_{0} $ is the virtual origin. We demonstrated that in the decay region of grid turbulence, ${ u}_{\mathit{rms}}^{2} { L}_{uu}^{3} $ and ${ v}_{\mathit{rms}}^{2} { L}_{vv}^{3} $, which correspond to Saffman’s integral, are constant for all grids and examined $R{e}_{M} $ values. However, ${ u}_{\mathit{rms}}^{2} { L}_{uu}^{5} $ and ${ v}_{\mathit{rms}}^{2} { L}_{vv}^{5} $, which correspond to Loitsianskii’s integral, and ${ u}_{\mathit{rms}}^{2} { L}_{uu}^{2} $ and ${ v}_{\mathit{rms}}^{2} { L}_{vv}^{2} $, which correspond to the complete self-similarity of energy spectrum and $\langle {\boldsymbol{u}}^{2} \rangle \sim {t}^{- 1} $, are not constant. Consequently, we conclude that grid turbulence is a type of Saffman turbulence for the examined $R{e}_{M} $ range of 6700–33 000 ($R{e}_{\lambda } = 27{\unicode{x2013}} 112$) regardless of grid geometry.
No abstract
Decaying characteristics of grid turbulence are investigated by means of the laboratory experiments using a wind tunnel. Turbulence-generating grids are installed at the entrance to the test section to generate nearly isotropic turbulence. Four grids (mesh size M = 10, 15, 25 and 50 mm) are used. Instantaneous streamwise velocity is measured by a hot wire anemometer. The mesh Reynolds numbers are adjusted to Re M = 6,700, 9,600, 16,000 and 33,000. In this study, decaying characteristics and invariants of grid turbulence for four grid sizes and Re M are mainly investigated. The result for each case shows that the decay exponent of turbulent intensity is close to a theoretical value of-6 5 for Saffman turbulence. Each case also shows that streamwise variation of integral length scale L uu and Taylor microscale λ grow as L uu ∝ (x M − x 0 M) 2 5 and λ ∝ (x M − x 0 M) 1 2 at (x M − x 0 M) > 50, where x 0 is the virtual origin. Consequently, it is concluded that in the decaying region of grid turbulence, u 2 r.m.s L 3 uu , which corresponds to Saffman's integral, are constant for all grids and Re M examined. However, u 2 r.m.s L 5 uu , which corresponds to Loitsianskii's integral, is not constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.