The direct 3α decay branch from the 02+ state at Ex=7.65 MeV in 12C, which is known as the Hoyle state, is considered to affect the triple-α reaction rate strongly and to give crucial information on its structure. We have performed a high-precision measurement of the 3α decay from this state using the 12C(12C,3α)12C reaction at E12C=110 MeV. The branching ratio of the direct 3α decay was under the detection limit in the present experiment. By comparing with Monte Carlo simulations for three decay mechanisms as the sequential decay through the ground state of ^{8}Be, the direct decay with equal energies of three α particles, and the direct decay to the phase space uniformly, we have obtained the upper limit of 0.2% on the direct 3α decay.
Abstract. An Electric Dipole Moment (EDM) of the elementary particle is a good prove to observe the phenomena beyond the Standard Model. A non-zero EDM shows the violation of the time reversal symmetry, and under the CPT invariance it means the CP violation. In paramagnetic atoms, an electron EDM results in an atomic EDM enhanced by the factor of the 3rd power of the charge of the nucleus due the relativistic effects. A heaviest alkali element francium (Fr), which is the radioactive atom, has the largest enhancement factor K ~ 895. Then, we are developing a high intensity laser cooled Fr factory at Cyclotron and Radioisotope Center (CYRIC), Tohoku University to perform the search for the EDM of Fr with the accuracy of 10 -29 e・cm. The important points to overcome the current accuracy limit of the EDM are to realize the high intensity Fr source and to reduce the systematic error due to the motional magnetic field and inhomogeneous applied field. To reduce the dominant component of the systematic errors mentioned above, we will confine the Fr atoms in the small region with the Magneto-Optical Trap and optical lattice using the laser cooling and trapping techniques. The construction of the experimental apparatus is making progress, and the new thermal ionizer already produces the Fr of ~10 6 ions/s with the primary beam intensity 200 nA. The developments of the laser system and optical equipments are in progress, and the present status and future plan of the experimental project is reported. IntroductionTo explore the mechanism responsible for the generation of observed matter-antimatter asymmetry in the Universe, the research on fundamental symmetry violations and various fundamental interactions using the laser cooled and trapped atoms is being promoted. The understanding of how the symmetry between the matter and antimatter was broken during the evolution of the early universe requires laboratory experiments which search for symmetry violations in the elementary particles such as quarks and leptons; one such phenomenon of our interest is the intrinsic electric dipole moment (EDM) of either elementary or composite systems. The non-zero observation of EDM provides the direct and conclusive signatures of the violation of time-reversal symmetry. The study of EDM also paves a way for the continuing quest for the ultimate theory of the Universe and it has a great potential in uncovering many mysteries which have been puzzling the mankind for ages such as the very survival of ourselves amidst many cosmic catastrophes such as a complete annihilation of matter and antimatter in the Universe. Using the extreme quantum states of matter at the low-energy scales we study the high-energy physics related to the phenomena which are thought to have happened in various epochs in the very early Universe.
We installed a source for ultracold neutrons at a new, dedicated spallation target at TRIUMF. The source was originally developed in Japan and uses a superfluid-helium converter cooled to 0.9 K. During an extensive test campaign in November 2017, we extracted up to 325 000 ultracold neutrons after a one-minute irradiation of the target, over three times more than previously achieved with this source. The corresponding ultracold-neutron density in the whole production and guide volume is 5.3 cm −3 . The storage lifetime of ultracold neutrons in the source was initially 37 s and dropped to 24 s during the eighteen days of operation. During continuous irradiation of the spallation target, we were able to detect a sustained ultracold-neutron rate of up to 1500 s −1 .Simulations of UCN production, UCN transport, temperature-dependent UCN yield, and temperature-dependent storage lifetime show excellent agreement with the experimental data and confirm that the ultracold-neutron-upscattering rate in superfluid helium is proportional to T 7 .
A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.