The Rhizopoda comprise a diverse assemblage of protists which depend on lobose or filose pseudopodia for locomotion. The biochemical and morphological diversity of rhizopods has led to an uncertain taxonomy. Ribosomal RNA sequence comparisons offer a measure of evolutionary relatedness that is independent of morphology and has been used to demonstrate a polyphyletic origin of the Lobosea. We sequenced complete small subunit ribosomal RNA coding regions from the filose amoebae, Euglypha rotunda and Paulinella chromatophora (Euglyphina) to position these taxa in the eukaryote phylogeny. The neighbor-joining analyses show that E. rotunda and P. chromatophora share a monophyletic origin and are not closely related to any lobose amoebae in our analyses. Instead, the Euglyphina form a robust sister group to the Chlorarachniophyta. These results provide further evidence for the polyphyly of the Rhizopoda and support the creation of a new amoeboid lineage which includes the Euglyphina and the chlorarachniophyte algae; taxa with tubular mitochondrial cristae and filose or reticulate pseudopodia.
Glaucocystophyte algae (sensu Kies, Berl. Deutsch. Bot. Ges. 92, 1979) contain plastids (cyanelles) that retain the peptidoglycan wall of the putative cyano-bacterial endosymbiont; this and other ultrastructural characters (e.g., unstacked thylakoids, phycobilisomes) have suggested that cyanelles are "primitive" plastids that may represent undeveloped associations between heterotrophic "host" cells (i.e., glaucocystophytes) and cyanobacteria. To test the monophyly of glaucocystophyte cyanelles and to determine their evolutionary relationship to other plastids, complete 16S ribosomal RNA sequences were determined for Cyanophora paradoxa, Glaucocystis nostochinearum, Glaucosphaera vacuolata, and Gloeochaete wittrockiana. Plastid rRNAs were analyzed with the maximum-likelihood, maximum-parsimony, and neighbor-joining methods. The phylogenetic analyses show that the cyanelles of C. paradoxa, G. nostochinearum, and G. wittrockiana form a distinct evolutionary lineage; these cyanelles presumably share a monophyletic origin. The rDNA sequence of G. vacuolata was positioned within the nongreen plastid lineage. This result is consistent with analyses of nuclear-encoded rRNAs that identify G. vacuolata as a rhodophyte and support is removal from the Glaucocystophyta. Results of a global search with the maximum-likelihood method suggest that cyanelles are the first divergence among all plastids; this result is consistent with a single loss of the peptidoglycan wall in plastids after the divergence of the cyanelles. User-defined tree analyses with the maximum-likelihood method indicate, however, that the position of the cyanelles is not stable within the rRNA phylogenies. Both maximum-parsimony and neighbor-joining analyses showed a close evolutionary relationship between cyanelles and non-green plastids; these phylogenetic methods were sensitive to inclusion/exclusion of the G. wittrockiana cyanelle sequence.(ABSTRACT TRUNCATED AT 250 WORDS)
The Glaucocystophyta (e.g., Cyanophora paradoxa) form a morphologically distinct group of photosynthetic protists that is primarily distinguished by its cyanelles (= plastids). To elucidate their evolutionary relationships, we determined nuclear-encoded small-subunit ribosomal RNA (SSU rRNA) coding regions for four taxa classified in the Glaucocystophyta (C. paradoxa, Glaucocystis nostochinearum, Glaucosphaera vacuolata, Gloeochaete wittrockiana; sensu Kies and Kremer), and these sequences were positioned within the eukaryotic phylogeny. Maximum likelihood, maximum-parsimony, and neighbor-joining phylogenetic analyses show that the Glaucocystophyta is a relatively late-diverging monophyletic assemblage within the "crown" group radiation that forms a sister group to cryptophyte algae. Glaucosphaera vacuolata is a red alga and lacks some cyanelle (e.g., bounding peptidoglycan wall) and host cell (e.g., cruciate flagellar roots) characters typical of glaucocystophytes. Our data are consistent with a monophyletic origin of the cyanelle in the glaucocystophytes. The distribution of photosynthetic taxa within the glaucocystophytes/cryptophytes and other lineages such as the filose amoebae/chlorarachniophytes and heterokont protists provide clues to the origin of plastids with four bounding membranes. We speculate that multiple, likely independent, secondary endosymbioses gave rise to these plastids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.