We have applied a new method for separating water and fat resonances in proton magnetic resonance (MR) imaging to human studies using a whole-body MR imaging system at 2.0 T. Chemical shift selective (CHESS) MR imaging provides either a water or fat image in a single experimental run within the same time needed for a conventional composite image. Although the technique requires a spectral resolution of about 1 ppm over the entire imaging region, first images of the human head and hip indicated that CHESS MR imaging is extremely promising for use in clinical investigations. Moreover, CHESS MR imaging can be combined arbitrarily with other imaging modalities and is easy to implement in any high-field MR imaging system.
Magnetic resonance (MR) spectroscopy and imaging experiments on humans were performed with a whole-body MR system at a static field of 4 tesla. Spectroscopic studies focussed on 1H, 13C, and 31P. Imaging of humans turned out to be possible, although below the optimum at this field. This holds especially for body imaging, since RF penetration effects and dielectric resonances influence the RF field homogeneity. Excellent volume selective proton spectra of the human cerebrum and cerebellum were obtained using the stimulated echo method. Natural abundance carbon spectra of the human calf were acquired both undecoupled and with narrowband decoupling, resolving the various triglyceride resonances. Broadband decoupling, however, would have violated SAR guidelines. Liver glycogen was detected on natural abundance 13C spectra.
A 0.9-m diam off-axis optical slip ring for a 140-Mbit/s data transmission between the fixed and rotating parts of a continuously rotating device has been made. A grazing incidence multiple reflection technique has been used in this data link for guiding the light around the circumference of the slip ring. The optical properties are discussed as well as a special arrangement for the compensation of pulse delay time effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.