This paper describes the content of an L-mode database that has been compiled with data from Alcator C-Mod, ASDEX, DIII, DIII-D, FTU, JET, JFT-2M, JT-60, PBX-M, PDX, T-10, TEXTOR, TFTR, and Tore-Supra. The database consists of a total of 2938 entries, 1881 of which are in the L-phase while 922 are ohmically heated only (OH). Each entry contains up to 95 descriptive parameters, including global and kinetic information, machine conditioning, and configuration. The paper presents a description of the database and the variables contained therein, and it also presents global and thermal scalings along with predictions for ITER. The L-mode thermal confinement time scaling, determined from a subset of 1312 entries for which the T E ,~F , are provided, is
This paper reports unique and unusual formations of columnar liquid crystals and organogels by self-assembling discotic molecules, which are composed of an aromatic hexaazatriphenylene (HAT) core and six flexible aromatic side chains. In HAT derivatives 3a, with 4'-(N,N-diphenylamino)biphenyl-4-yl chains, 3b, with 4'-[N-(2-naphthyl)-N-phenylamino]biphenyl-4-yl chains, and 3c, with 4'-phenoxybiphenyl-4-yl chains, the two-dimensional hexagonal packings can be created by their self-assembling in the liquid crystalline phase, which were characterized by polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction analysis. In certain solvents, HAT molecules 3a-c can form the viscoelastic fluid organogels, in which one-dimensional aggregates composed of the HAT molecules are self-assembled and entangled into three-dimensional network structures. The organogel structures were analyzed by scanning electron microscopy observation, (1)H NMR, UV-vis, and circular dichroism spectroscopy. In contrast to 3a-c, none of the liquid crystalline and organogel phases could be formed from 3d and 3e with short aromatic side chains including a phenylene spacer, and 3f (except a few specific solutions) and 3g without terminal diarylamino and phenoxy groups. In 3a-c, the aromatic side chains with terminal flexible groups make up soft regions that cooperatively stabilize the liquid crystalline and organogel supramolecular structures together with the hard regions of the hexaazatriphenylene core.
Fusion performance of reversed shear discharges with an L-mode edge has been significantly improved in a thermonuclear dominant regime with up to 2.8 MA of plasma current in the JT-60U tokamak. The core plasma energy is efficiently confined due to the existence of persistent internal transport barriers formed for both ions and electrons at a large minor radius of r͞a ϳ 0.7 near the boundary of the reversed shear region. In an assumed deuterium-tritium fuel, the peak fusion amplification factor defined for transient conditions involving the dW ͞dt term would be in excess of unity. [S0031-9007(97)04592-4] PACS numbers: 52.55.Fa, 52.55.PiThe reversed shear discharges are considered attractive for a steady state operation with a large bootstrap current fraction in tokamak reactors as proposed for SSTR [1] and ITER [2], since it would be possible to match the hollow current profile to a bootstrap current profile in a steady state. While the central magnetic shear in tokamak plasmas is naturally reversed during a sufficiently long discharge duration with a large bootstrap current fraction [3], the forced shear reversal operation by enhancing a skin current effect has become important for establishing a controlled approach to the steady state [4].In nuclear fusion research, critical conditions in which fusion power produced in plasmas is equal to loss power from the plasmas have been pursued as a crucial milestone ultimately towards the commercial use of thermonuclear fusion energy. In order to determine whether the reversed shear scenario is workable, it is crucially important to demonstrate the fusion-relevant performance, particularly in the thermonuclear fusion regime with the shear reversal operation. So far, however, most of the previous experiments addressing high fusion reactivity in tokamaks have been limited to a hot-ion regime with substantial beam-thermal reactions for deuterium plasmas in TFTR supershot [5], JET hot-ion H mode [6] and JT-60U high-b p H mode [7], and deuterium-tritium (D-T) plasmas in TFTR supershot [8]. Although fusion performance has been recently enhanced with strong profile and shaping control in deuterium reversed shear plasmas with an H-mode edge in DIII-D [9], the projected D-T fusion power is substantially below the loss power from the plasma. In the present paper, it is shown that fusion performance has been significantly improved in JT-60U for reversed shear discharges with an L-mode edge in a thermonuclear fusion regime, so that the transient fusion amplification factor defined as below would be in excess of unity.In JT-60U, the experimental campaign of the reversed shear discharges aiming at high fusion amplification factor ͑Q͒ has been intensively performed with D beams into D plasmas. The confinement properties for the reversed shear discharges created in JT-60U are characterized by (i) the significant reduction of heat and particle transport for electrons as well as ions around the internal transport barrier (ITB), (ii) a large extension of the enhanced confinement region up...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.