Packed bed reactors are the most frequently used devices to perform heterogeneously catalyzed reactions on industrial scales. An industrial real-life heterogeneous catalysis is complex process that combines fully three-dimensional mass, momentum and energy transport on several scales. In the present work, we leverage our previously developed CFD solver for non-isothermal heterogeneously catalyzed reactive flow based on the finite volume method and couple it with our in-house DEM-based method for preparation of random packed beds. The resulting framework is verified in the simplified cases against available analytical solutions and correlations and is used to study an industrially-relevant case of ethylene oxychlorination performed in a tubular packed bed comprising CuCl₂-coated catalyst carrying particles. In particular, we compare properties of three different industrially used catalyst carrying particles: Raschig rings, Reformax, and Wagon wheels.
This paper is part of a research focused on simulating (i) the catalytic conversion of environment endangering gases, and (ii) trapping of the particulate matter in automotive exhaust gas aftertreatment. Historically, the catalytic conversion and the filtration of soot particles were performed in independent devices. However, recent trend is to combine the catalytic converter and soot filter into a single device, the catalytic filter. Compared to the standard two-device system, the catalytic filter is more compact and has lower heat losses. Nevertheless, it is highly sensitive to the catalyst distribution. This study extends our recently developed methodology for pore-scale simulations of flow, diffusion and reaction in the coated catalytic filters. The extension consists of enabling data transfer from macro-to pore-scale models by preparing geometrically realistic macro-scale CFD simulations. The simulation geometry is based on XRT scans of real-life catalytic filters. The flow data from the newly developed macro-scale model are mapped as boundary conditions into the pore-scale simulations and used to improve the estimates of the catalytic filter filtration efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.