SUMMARYIn southern African transfrontier conservation areas (TFCAs), people, livestock and wildlife share space and resources in semi-arid landscapes. One consequence of the coexistence of wild and domestic herbivores is the risk of pathogen transmission. This risk threatens local livelihoods relying on animal production, public health in the case of zoonoses, national economies in the context of transboundary animal diseases, and the success of integrated conservation and development initiatives. The level of interaction between sympatric wild and domestic hosts, defining different wildlife/livestock interfaces, characterizes opportunities of pathogen transmission between host populations. Exploring the relationship between infection burden and different types of wildlife/ domestic interfaces is therefore necessary to manage the sanitary risk in animal populations through control options adapted to these multi-host systems. Here, we assessed the infection burdens of sympatric domestic cattle (Bos taurus/Bos indicus) and African buffalo (Syncerus caffer) at an unfenced interface and compared the infection burdens of cattle populations at different wildlife/ livestock interfaces in the Great Limpopo TFCA. Patterns of infection in ungulate populations varied between wild and domestic hosts and between cattle populations at different wildlife/livestock interfaces. Foot-and-mouth disease, Rift Valley fever and theileriosis infections were detected in buffalo and cattle at unfenced interfaces; bovine tuberculosis was only present in buffalo; and brucellosis and lumpy skin disease only in cattle. At unfenced interfaces, cattle populations presented significantly higher Theileria parva and brucellosis prevalence. We hypothesize that cattle populations at wildlife/livestock interfaces face an increased risk of infection compared to those isolated from wildlife, and that the type of interface could influence the diversity and quantity of pathogens shared. Additional host behavioural and molecular epidemiological studies need to be conducted to support this hypothesis. If it is confirmed, the management of wildlife/livestock interfaces will need to be considered through the prism of livestock and public health.
In search for low-cost, safe and environmentally benign plant-based alternatives to commercial pesticides, the efficacy of Lippia javanica aqueous leaf extracts in controlling ticks on cattle, acute oral toxicity in mice and phytochemistry were evaluated. L. javanica aqueous leaf extracts at 10% and 20% w/v were effective at controlling cattle ticks but not as good as an amitraz-based acaricide Tickbuster®. However, they can provide an effective tick control option where synthetic products are unavailable or unaffordable, particularly in remote parts of southern Africa. Peripheral blood samples collected showed no haemoparasites in treated cattle implying that animals did not suffer from clinical tick-borne diseases. The leaf aqueous extracts of L. javanica were tested for toxicity in BALB/c mice. While anecdotal evidence suggests L. javanica has low mammalian toxicity, within 48 h all mice fed with the L. javanica leaf aqueous extract at 12.5-37.5% v/v were lethargic, and overall mortality was 37.5% (n=24). Thus, despite their apparent safety, water extracts of L. javanica leaves may have deleterious health implications on humans and animals if consumed at very high doses. Many compounds have been identified from L. javanica including an array of phenolic glycosides, flavonoids and essential oils but none of these are known to have acute toxic properties.
A total of 17 commercially reared ostriches (Struthio camelus) from Msengi farm, Chinhoyi, Zimbabwe, observed with swollen eyes, severe conjunctivitis and constant lacrimation accompanied by a purulent exudate, were restrained for further clinical examination. Some of the birds were semi-blind with severe loss of body condition. When examined, tiny organisms were observed attached to the nictitating membranes and the conjuctival sacs of both eyes. The organisms were identified as Philophthalmus gralli, the "oriental eye-fluke" and Melanoides tuberculata, a prosobranch snail, was confirmed as the intermediate host through natural and experimental infection. To the best of our knowledge this is the first record of the oriental eye-fluke infection in birds in Zimbabwe and Africa and extends its known geographical range.
The efficacy of Solanum incanum and Strychnos spinosa aqueous fruit extracts was evaluated against cattle ticks in on-station experiments and laboratory tick bioassays. In the on-station experiment using cattle, fruit extracts were applied at three concentrations 5, 10, and 20 % (w/v) and compared with a commercial acaricide, Tickbuster (amitraz) spray (positive control) and no treatment (negative control). The treatments were applied at weekly intervals for 6 weeks as surface sprays on 32 Mashona cattle in a completely randomized design experiment. Ticks on individual cattle were identified, counted, and recorded daily. Peripheral blood samples were collected for parasite screening. In the laboratory, tick bioassays were conducted at four concentrations, 5, 10, 20, and 40% (w/v) fruit extracts compared to Tickbuster (amitraz) spray (positive control) and distilled water (negative control). The extracts were incubated with Rhipicephalus (Boophilus) decoloratus tick larvae and mortalities for each treatment level recorded after 24 and 48 h. The 5% Solanum incanum treatment had higher efficacy ratio (P < 0.05) than the other fruit extract concentrations of the same plant species. Efficacy ratio was higher (P < 0.05) in the 5% S. spinosa-treated cattle than in the untreated control but lower (P < 0.05) than that for the amitraz treatment. The bioassays indicated that there was a high efficacy ratio for the lowest fruit extract concentrations when ticks were exposed to acaricidal treatments for 48 h compared to 24 h. Overall, the results indicate that Solanum incanum and Strychnos spinosa individually have some acaricidal effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.