Fe-doped La0.77Sr0.23Mn1 − yFeyO3 nanoparticles have been synthesized by sol-gel method, and ceramic samples based on them were sintered at 1613 K. Crystallographic and magnetic properties of obtained nanoparticles and ceramic samples have been studied. It has been established that cell volume for nanoparticles increases with growing of iron content, while this dependence displays an opposite trend in the case of ceramic samples. Mössbauer investigations have shown that in all samples, the oxidation state of iron is +3. According to magnetic studies, at room temperature, both nanoparticles and ceramic samples with y ≤ 0.06 display superparamagnetic properties and samples with y ≥ 0.08 are paramagnetic. Magnetic fluids based on La0.77Sr0.23Mn1 − yFeyO3 nanoparticles and aqua solution of agarose have been prepared. It has been established that heating efficiency of nanoparticles under an alternating magnetic field decreases with growing of iron content.
Exchange biasing in ferromagnet/antiferromagnet bilayers is known to enhance the material’s ferromagnetic resonance frequency and make it strongly angle dependent due to the unidirectional anisotropy induced at the interface. We observe a ten-fold enhancement in frequency and angle-independent ferromagnetic resonance in bilayers of Py/FeMn with ultrathin FeMn, accompanied by a significantly enhanced magnetic moment. The observed isotropic frequency enhancement is consistent with rotatable rather than unidirectional magnetic anisotropy and the induced magnetic moment links this anisotropy with the ferromagnet-proximity effect. The estimated effective anisotropy field acting on the proximity-induced moment in ultrathin FeMn can be as high as 0.5 T at room temperature. Our results show the potential of the ferromagnetic proximity effect combined with the inherent exchange anisotropy in antiferromagnets for high-speed spintronic applications.
We observe and analyze tunable relaxation of a pure spin current by an antiferromagnet in spinvalves. This is achieved by carefully controlling the angle between a resonantly excited ferromagnetic layer pumping the spin current and the Néel vector of the antiferromagnetic layer. The effect is observed as an angle-dependent spin-pumping contribution to the ferromagnetic resonance linewidth. An interplay between spin-mixing conductance and, often disregarded, longitudinal spin conductance is found to underlie our observations, which is in agreement with a recent prediction for related ferromagnetic spin valves.
Magnetoresonance (in the frequency range 22–80 GHz) and magnetostatic studies of the La1−xSrxMnO3 compound with strontium impurity concentrations x = 0.15; 0.225; 0.3; 0.45; 0.6, performed at room and liquid helium temperatures. A splitting of the electron magnetic resonance curve is detected for x = 0.3, which serves as evidence of mixed magnetic phases. The samples' concentration dependences of saturation magnetization are determined based on the obtained experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.