The influence of antigibberelin on the growth, development and productivity of eggplant was investigated. It was established that the use of tebuconazole and chlormequat chloride is a highly effective tool for regulation of morphogenesis and productivity of eggplant. We found that retardants slowed the growth of plants, and increased the number of leaves and leaf area and dry substance weight of the whole plant. Under the influence of Esfon ethylene producers the inhibition of the growth process was not accompanied by increase of the number, weight and area of leaves.Antigibberelin agents caused the thickening of chlorenchyma and the growth of the columnar cells and cell sizes of spongy parenchyma. Under the action of agents the thickness of the upper and lower epidermis of the leaf increased. As a result of mesostructural and morphometric changes of leaf structure under the influence of retardants the leaf index and specific leaf surface density increased.The growth inhibitory agents increased the chlorophyll content in leaves and caused the growth of chlorophyll index in crops.Retardants reduced the content of sugar and starch in leaves because of their enhanced outflow to fruits, the amount of which was predicted to be greater. Under the influence of Esfon the flow of carbohydrates to the acceptor areas was slower.The use of retardants of triazole and onium origin positively influenced the formation of productivity elements of the culture, which led to increase in the fruit yield. The use of tebuconazole was found to be the most effective.
There were studied the peculiarities of growth processes, the formation of the leaf apparatus, its mesostructure and photosynthetic activity, as well as the biological productivity of the Bobcat hybrid tomato plants under the influence of synthetic analogues of growth promoting hormones-1-naphthaleneacetic acid (1-NAA), gibberellic acid (GA 3), 6-benzylaminopurine (6-BAP), and retardantschloromequate chloride (ССС-750), tebuconazole (EW-250), ethephon (2chloroethylphosphonic acid, 2-CEPA), which differ in the action mechanism. It was revealed that growth promotors increased, and retardants reduced the tomato plants height. It was established that 1-NAA, GA 3 , and CCC-750 increased the leaf number on the plant, while under 2-CEPA treatment, the index was less than the control, and under the EW-250 action it remained practically unchanged. All growth regulators, except 2-CEPA, increased the leaf blades number, the fresh weight, and leaf area. All growth promotors increased the whole plant dry weight, while the retardants EW-250 and CCC-750 did not affect this index, and 2-CEPA significantly reduced it. All retardants and 6-BAP significantly increased the total chlorophyll content in tomato leaves, while under the action of GA 3 this index decreased. The retardants EW-250 and CCC-750, and the growth promotor 6-BAP contributed to the thickening of the tomato leaf chlorenchyma, and the ethylene producer 2-CEPA reduced it. Under the influence of all growth regulators, except 2-CEPA, the volume of columnar parenchyma cells increased. It was established that at the stage of fruit formation onset, all growth regulators, except 1-NAA, increased the rate of CO 2 assimilation, photorespiration, dark respiration and transpiration. All growth regulators, except 2-CEPA, contributed to the increase in tomatoes yield, while the use of the growth promotor 6-BAP and the retardant EW-250 proved to be the most effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.