Object and purpose of research. This paper is intended to develop a mathematical model of cavitation void fragmentation into separate collapsing bubbles as an acoustic source for further implementation in Logos software package. The study was performed on propeller models in cavitating environment. Subject matter and methods. Volume and quantity of bubbles appearing after fragmentation of a cavitation void on propellers, as well as amplitude and frequency properties of a single bubble collapse are studied as per CFD methods. Viscous flow properties are found from finite-volume (FVM) solution to unsteady Reynolds equations (RANS) closed by a biparametric semi-empirical turbulence model. The coefficients in the mathematical model of acoustic source thus obtained were calibrated through validation that included noise measurements at KSRC Cavitation Tunnel. Main results. This work included numerical simulation of collapse dynamics for a single cavitation bubble at different initial conditions, with approximation of the pressure impact created by bubble collapse in the infinite fluid and near a solid wall. The study estimated volume and quantity of the bubbles created by the fragmentation of cavitation void on propellers (3 propellers of different shape operating at different advance ratios and cavitation numbers). The mathematical model representing above-mentioned process could be further implemented in Logos software as a finite-volume algorithm with k-ω SST turbulence model. The study also created a validation base for further testing and calibration of the mathematical model thus developed. Conclusion. The study was performed as part of project Mathematical simulation on exa- and zetaflops class supercomputers launched by National Centre for Physics and Mathematics (Russia). The analysis of obtained results has shown that the mathematical model suggested in this paper does have practical potential, but it needs additional empirical data for greater flexibility and more accurate estimates. Without this model, these practical tasks still could be handled but at a cost of considerable and, most importantly, unnecessary increase in required hardware resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.