There is increasing evidence that different phospholipids are involved in regulation of various cell processes and cell-cell interactions. Lysophospholipids (lysophosphatidic acid, lysophosphatidylcholine) and a number of lysosphingolipids play particular roles in these regulations. Their effects are mediated by specific G-protein-coupled receptors. G-Protein coupled signal transduction to the cell nucleus involving a chain of intracellular protein kinases induces the main effects in cells--growth, proliferation, survival, or apoptosis. This review summarizes recent data on various groups of lysophospholipid receptors and their cell signal transduction pathways.
It is well known that blood lipoproteins (LPs) are multimolecular complexes of lipids and proteins that play a crucial role in lipid transport. High-density lipoproteins (HDL) are a class of blood plasma LPs that mediate reverse cholesterol transport (RCT)—cholesterol transport from the peripheral tissues to the liver. Due to this ability to promote cholesterol uptake from cell membranes, HDL possess antiatherogenic properties. This function was first observed at the end of the 1970s to the beginning of the 1980s, resulting in high interest in this class of LPs. It was shown that HDL are the prevalent class of LPs in several types of living organisms (from fishes to monkeys) with high resistance to atherosclerosis and cardiovascular disorders. Lately, understanding of the mechanisms of the antiatherogenic properties of HDL has significantly expanded. Besides the contribution to RCT, HDL have been shown to modulate inflammatory processes, blood clotting, and vasomotor responses. These particles also possess antioxidant properties and contribute to immune reactions and intercellular signaling. Herein, we review data on the structure and mechanisms of the pleiotropic biological functions of HDL from the point of view of their evolutionary role and complex dynamic nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.