The total cross sections for single ionization of helium and single and double ionization of argon by antiproton impact have been measured in the kinetic energy range from 3 to 25 keV using a new technique for the creation of intense slow antiproton beams. The new data provide benchmark results for the development of advanced descriptions of atomic collisions and we show that they can be used to judge, for the first time, the validity of the many recent theories.
The stopping power for antiprotons in various solid targets has been measured in the low-energy range of 1-100 keV. In agreement with most models, in particular free-electron gas models, the stopping power is found to be proportional to the projectile velocity below the stopping-power maximum. Although a stopping power proportional to velocity has also been observed for protons, the interpretation of such measurements is difficult due to the presence of charge exchange processes. Hence, the present measurements constitute the first unambiguous support for a velocity-proportional stopping power due to target excitations by a pointlike projectile.
The slowing-down process of pointlike charged particles in matter has been investigated by measuring the stopping power for antiprotons in materials of qualitatively very different nature. Whereas the velocity-proportional stopping power observed for metal-like targets such as aluminum over a wide energy range of 1-50 keV is in agreement with expectations, it is surprising that the same velocity dependence is seen for a large band-gap insulator such as LiF. The validity of these observations is supported by several measurements with protons and several checks of the target properties. The observations call for both a qualitative explanation and a quantitative theoretical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.