The effect of insulin-like growth factor-I on collagen synthesis was studied using cultured human osteoblast-like SaOS-2 cells by measuring the incorporation of tritiated L-proline into immunoprecipitable type-I collagen. Tritiated L-proline incorporation into collagen was significantly stimulated by insulin-like growth factor-I in a time- and concentration-dependent manner. Unlabelled L-proline and alpha-(methylamino) isobutyric acid inhibited either the influx into cells, or the incorporation into collagen, of tritiated L-proline. The increase in incorporation of tritiated L-proline was significantly reduced by cycloheximide and actinomycin D. L-Proline incorporation into collagen was also stimulated by insulin-like growth factor-II, insulin-like growth factor-I analogues and insulin. The insulin-like growth factor-I-stimulated L-proline incorporation was inhibited by one of its binding proteins, insulin-like growth factor binding protein-4, in a concentration-dependent manner.
The cellular mechanisms involved in the accelerated bone loss occurring in association with estrogen deprivation as seen following the menopause are not fully understood. Insulin-like growth factor-I (IGF-I) is the local regulator of osteoblasts and one of its binding proteins, insulin-like growth factor-binding protein-4 (IGFBP-4), binds to IGF-I and suppresses biological activity. Previous studies have shown that the binding activity of IGFBP-4 in the conditioned medium of parathyroid hormone (PTH)-treated SaOS-2 osteoblastic-like cells is enhanced twofold and that this PTH-enhanced IGFBP-4 binding activity is abolished by 17 beta-estradiol. Levels of IGFBP-4 in the conditioned medium have been reported to be regulated not only at the level of production but also at the level of degradation which is catalyzed by a protease that specifically cleaves IGFBP-4. We have, therefore, studied the effects of 17 beta-estradiol and PTH on IGFBP-4 protease activity using SaOS-2 cells. SaOS-2 cells produce a protease that specifically cleaves IGFBP-4 into two fragments of approximately 18 and 14 kilodaltons. IGFBP-4 protease activity in the conditioned medium from PTH-treated cells was suppressed, while this PTH-induced suppression of protease activity was reversed by the addition of 17 beta-estradiol to the cultures. IGFBP-4 proteolytic activity was stimulated by IGF-I or IGF-II added exogenously and was inhibited by EDTA or protease inhibitors. IGFBP-4 proteolyzed in the conditioned medium from cells treated with PTH and 17 beta-estradiol was less effective at inhibiting IGF-I-stimulated [3H]thymidine incorporation into DNA compared with that proteolyzed in the conditioned medium from PTH-treated cells. The simplest explanation is that 17 beta-estradiol suppressed the inhibitory effect of PTH on osteoblastic activity by inhibiting the PTH-induced suppression of IGFBP-4 protease activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.