Abstract. The lifetime of methane is controlled to a very large extent by the abundance of the OH radical. The tropics are a key region for methane removal, with oxidation in the lower tropical troposphere dominating the global methane removal budget (Bloss et al., 2005). In tropical forested environments where biogenic VOC emissions are high and NO x concentrations are low, OH concentrations are assumed to be low due to rapid reactions with sink species such as isoprene. New, simultaneous measurements of OH concentrations and OH reactivity, k OH , in a Borneo rainforest are reported and show much higher OH than predicted, with mean peak concentrations of ∼2.5×10 6 molecule cm −3 (10 min average) observed around solar noon. Whilst j (O 1 D) and humidity were high, low O 3 concentrations limited the OH production from O 3 photolysis. Measured OH reactivity was very high, peaking at a diurnal average of 29.1±8.5 s −1 , corresponding to an OH lifetime of only 34 ms. To maintain the observed OH concentration given the measured OH reactivity requires a rate of OH production approximately 10 times greater than calculated using all measured OH sources. A test of our current understanding of the chemistry within a tropical rainforest was made using a detailed zero-dimensional model to compare with measurements. The model overpredicted the observed HO 2 concentrations and significantly under-predicted OH concentrations. Inclusion of an additional OH source formed as a recycled product of OH iniCorrespondence to: L. K. Whalley (l.k.whalley@leeds.ac.uk) tiated isoprene oxidation improved the modelled OH agreement but only served to worsen the HO 2 model/measurement agreement. To replicate levels of both OH and HO 2 , a process that recycles HO 2 to OH is required; equivalent to the OH recycling effect of 0.74 ppbv of NO. This recycling step increases OH concentrations by 88 % at noon and has wide implications, leading to much higher predicted OH over tropical forests, with a concomitant reduction in the CH 4 lifetime and increase in the rate of VOC degradation.
Abstract. The Tropospheric ORganic CHemistry experiment (TORCH) took place during the heatwave of summer 2003 at Writtle College, a site 2 miles west of Chelmsford in Essex and 25 miles north east of London. The experiment was one of the most highly instrumented to date. A combination of a large number of days of simultaneous, collocated measurements, a consequent wealth of model constraints and a highly detailed chemical mechanism, allowed the atmospheric chemistry of this site to be studied in detail. Between 25 July and 31 August, the concentrations of the hydroxyl radical and the hydroperoxy radical were measured using laser-induced fluorescence at low pressure and the sum of peroxy radicals was measured using the peroxy radical chemical amplifier technique. The concentrations of the radical species were predicted using a zero-dimensional box model based on the Master Chemical Mechanism version 3.1, which was constrained with the observed concentrations of relatively long-lived species. The model included a detailed parameterisation to account for heterogeneous loss of hydroperoxy radicals onto aerosol particles. Quantilequantile plots were used to assess the model performance in respect of the measured radical concentrations. On average, measured hydroxyl radical concentrations were overpredicted by 24%. Modelled and measured hydroperoxy radical concentrations agreed very well, with the model overpredicting on average by only 7%. The sum of peroxy radicals was under-predicted when compared with the respective measurements by 22%. Initiation via OH was dominatedCorrespondence to: N. Carslaw (nc12@york.ac.uk) by the reactions of excited oxygen atoms with water, nitrous acid photolysis and the ozone reaction with alkene species. Photolysis of aldehyde species was the main route for initiation via HO 2 and RO 2 . Termination, under all conditions, primarily involved reactions with NO x for OH and heterogeneous chemistry on aerosol surfaces for HO 2 . The OH chain length varied between 2 and 8 cycles, the longer chain lengths occurring before and after the most polluted part of the campaign. Peak local ozone production of 17 ppb hr −1 occurred on 3 and 5 August, signifying the importance of local chemical processes to ozone production on these days. On the whole, agreement between model and measured radicals is good, giving confidence that our understanding of atmospheres influenced by nearby urban sources is adequate.
Abstract. In April-July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rainforCorrespondence to: C. N. Hewitt (n.hewitt@lancaster.ac.uk) est" (OP3) project. Fluxes and concentrations of trace gases and particles were made from and above the rainforest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest Published by Copernicus Publications on behalf of the European Geosciences Union. 170 C. N. Hewitt et al.: The OP3 project: introduction, rationale, location characteristics and tools site was not significantly impacted by anthropogenic pollution, and this is confirmed by satellite retrievals of NO 2 and HCHO. The dominant modulators of atmospheric chemistry at the rainforest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NO x volume mixing ratio (∼100 pptv/pptv), current chemical models suggest that daytime maximum OH concentrations should be ca. 10 5 radicals cm −3 , but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements that suggest that an unexplained source of OH must exist above tropical rainforest and we continue to interrogate the data to find explanations for this.
Observations of the tropical atmosphere are fundamental to the understanding of global changes in air quality, atmospheric oxidation capacity and climate, yet the tropics are under-populated with long-term measurements. The first three years (October 2006 -September 2009) of meteorological, trace gas and particulate data from the global WMO/Global Atmospheric Watch (GAW) Cape Verde Atmospheric Observatory Humberto Duarte Fonseca (CVAO; 16° 51' N, 24° 52' W) are presented, along with a characterisation of the origin and pathways of air masses arriving at the station using the NAME dispersion model and simulations of dust deposition using the COSMO-MUSCAT dust model. The observations show a strong influence from Saharan dust in winter with a maximum in super-micron aerosol and particulate iron and aluminium. The dust model results match the magnitude and daily variations of dust events, but in the region of the CVAO underestimate the measured aerosol optical thickness (AOT) because of contributions from other aerosol. The NAME model also captured the dust events, giving confidence in its ability to correctly identify air mass origins and pathways in this region. Dissolution experiments on collected dust samples showed a strong correlation between soluble Fe and Al and measured solubilities were lower at high atmospheric dust concentrations.Fine mode aerosol at the CVAO contains a significant fraction of non-sea salt components including dicarboxylic acids, methanesulfonic acid and aliphatic amines, all believed to be of oceanic origin. A marine influence is also apparent in the year-round presence of iodine and bromine monoxide (IO and BrO), with IO suggested to be confined mainly to the surface few hundred metres but BrO well mixed in the boundary layer. Enhanced CO 2 and CH 4 and depleted oxygen concentrations are markers for air-sea exchange over the nearby northwest African coastal upwelling area. Long-range transport results in generally higher levels of O 3 and anthropogenic non-methane hydrocarbons (NMHC) in air originating from North America. Ozone/CO ratios were highest (up to 0.42) in European air masses that contain relatively less well-aged air. In air heavily influenced by Saharan dust the O 3 /CO ratio was as low as 0.13, possibly indicating O 3 uptake to dust. Nitrogen oxides (NO x and NO y ) show generally higher concentrations in winter when air mass origins are predominantly from Africa. High photochemical activity at the site is shown by maximum spring/summer concentrations of OH and HO 2 of 9 × 10 6 molecule cm -3 and 6 × 10 8 molecule cm -3 , respectively. After the primary photolysis source, the chemistry of IO and BrO, the abundance of HCHO, and aerosol uptake are important for the HO x budget in this region.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.