Detailed measurements of the electron performance of the ATLAS detector at the LHC are reported, using decays of the Z, W and J /ψ particles. Data collected in 2010 at √ s = 7 TeV are used, corresponding to an integrated luminosity of almost 40 pb −1 . The inter-alignment of the inner detector and the electromagnetic calorimeter, the determination of the electron energy scale and resolution, and the performance in terms of response uniformity and linearity are discussed. The electron identification, reconstruction and trigger efficiencies, as well as the charge misidentification probability, are also presented.
The χ(b)(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider at sqrt[s] = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb(-1), these states are reconstructed through their radiative decays to Υ(1S,2S) with Υ → μ+ μ-. In addition to the mass peaks corresponding to the decay modes χ(b)(1P,2P) → Υ(1S)γ, a new structure centered at a mass of 10.530 ± 0.005(stat) ± 0.009(syst) GeV is also observed, in both the Υ(1S)γ and Υ(2S)γ decay modes. This structure is interpreted as the χ(b)(3P) system.
A QCD analysis is reported of ATLAS data on inclusive W(±) and Z boson production in pp collisions at the LHC, jointly with ep deep-inelastic scattering data from HERA. The ATLAS data exhibit sensitivity to the light quark sea composition and magnitude at Bjorken x∼0.01. Specifically, the data support the hypothesis of a symmetric composition of the light quark sea at low x. The ratio of the strange-to-down sea quark distributions is determined to be 1.00(-0.28)(+0.25) at absolute four-momentum transfer squared Q(2)=1.9 GeV(2) and x=0.023.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.