Brown dwarfs display Jupiter-like auroral phenomena such as magnetospheric Hα emission and coherent radio emission. Coherent radio emission is a probe of magnetospheric acceleration mechanisms and it provides a direct measurement of the magnetic field strength at the emitter’s location, both of which are difficult to access by other means. Observations of the coldest brown dwarfs (spectral types T and Y) are particularly interesting as their magnetospheric phenomena may be very similar to those in gas-giant exoplanets. Here we present 144 MHz radio and infrared adaptive optics observations of the brown dwarf WISEP J101905.63+652954.2 made using the Low Frequency Array (LOFAR) and Keck telescopes, respectively. The radio data show pulsed, highly circularly polarised emission which yields a rotation rate of 0.32 ± 0.03 h−1. The infrared imaging reveals the source to be a binary with a projected separation of 423.0 ± 1.6 mas between components of spectral type T5.5 ± 0.5 and T7.0 ± 0.5. With a simple ‘toy model’, we show that the radio emission can, in principle, be powered by the interaction between the two dwarfs with a mass-loss rate of at least 25 times the Jovian value. WISEP J101905.63+652954.2 is interesting because it is the first pulsed methane dwarf detected in a low radio-frequency search. Unlike previous gigahertz-frequency searches that were only sensitive to objects with kiloGauss fields, our low-frequency search is sensitive to surface magnetic fields of ≈50 G and above which might reveal the coldest radio-loud objects down to planetary mass scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.