Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure. Predation success and prey performance experiments evaluating differences between L. raynerae male, female, gravid female and copulating pairs exposed to notonectid predation were then examined. Under natural conditions, a female dominated copepod population developed over time and was correlated to predation pressure, while under predator‐free conditions non sex‐skewed prey population demographics persisted. Predator–prey laboratory trials showed no difference in vulnerability and escape performance for male, female and gravid female copepods, but pairs in copula were significantly more vulnerable to predation. This vulnerability was not shared by both sexes, with only female copepods ultimately escaping from successful predation on a mating pair. These results suggest that contact periods during copula may contribute to the development of sex‐skewed copepod ratios over time in ecosystems dominated by hexapod predators. This is discussed within the context of vertebrate and invertebrate predation and how these dissimilar types of predation are likely to have acted as selective pressures for copepod mating systems.
Beaks are increasingly recognised as important contributors to avian thermoregulation. Several studies supporting Allen’s rule demonstrate how beak size is under strong selection related to latitude and/or air temperature (Ta). Moreover, active regulation of heat transfer from the beak has recently been demonstrated in a toucan (Ramphastos toco, Ramphastidae), with the large beak acting as an important contributor to heat dissipation. We hypothesised that hornbills (Bucerotidae) likewise use their large beaks for non-evaporative heat dissipation, and used thermal imaging to quantify heat exchange over a range of air temperatures in eighteen desert-living Southern Yellow-billed Hornbills (Tockus leucomelas). We found that hornbills dissipate heat via the beak at air temperatures between 30.7°C and 41.4°C. The difference between beak surface and environmental temperatures abruptly increased when air temperature was within ~10°C below body temperature, indicating active regulation of heat loss. Maximum observed heat loss via the beak was 19.9% of total non-evaporative heat loss across the body surface. Heat loss per unit surface area via the beak more than doubled at Ta > 30.7°C compared to Ta < 30.7°C and at its peak dissipated 25.1 W m-2. Maximum heat flux rate across the beak of toucans under comparable convective conditions was calculated to be as high as 61.4 W m-2. The threshold air temperature at which toucans vasodilated their beak was lower than that of the hornbills, and thus had a larger potential for heat loss at lower air temperatures. Respiratory cooling (panting) thresholds were also lower in toucans compared to hornbills. Both beak vasodilation and panting threshold temperatures are potentially explained by differences in acclimation to environmental conditions and in the efficiency of evaporative cooling under differing environmental conditions. We speculate that non-evaporative heat dissipation may be a particularly important mechanism for animals inhabiting humid regions, such as toucans, and less critical for animals residing in more arid conditions, such as Southern Yellow-billed Hornbills. Alternatively, differences in beak morphology and hardness enforced by different diets may affect the capacity of birds to use the beak for non-evaporative heat loss.
Territoriality and stable home ranges are a common space‐use pattern among animals. These ranges provide its inhabitants with important resources and thus favourable territories are associated with an increased fitness. While the role of territory quality and changes of territory ownership have often been investigated, the changes of territorial boundaries have been less studied. Here, we investigated space‐use changes in a social mammal species, applying a novel analytical approach, calculating long‐term dissimilarity in space use using distancematrices based on periodic utilization distributions. This approach makes it possible to identify different space‐use patterns, which cannot be distinguished by only considering changes between consecutive time periods. We analysed meerkat (Suricata suricatta) movements of a total of 24 different groups over a 16‐year period, resulting in 134 group years. We then correlated the identified home‐range changes to life‐history events and possible environmental drivers. Groups had stable territories for several years before they abandoned their home range mostly to move quickly to new areas where they again remained for several years. Of 26 identified sudden shifts, 22 occurred in the summer months and often involved distances larger than the original home‐range size. Home‐range movements that were close together in time were often also spatially clustered and moved in a similar direction. These shifts were often preceded by more frequent interactions between groups, but did not seem to be a product of direct displacements by other groups. The normalized difference vegetation index as a measure of food production and social factors such as dominance changes did not correlate to changes. Against our expectation space‐use changes were not accumulations of small changes, but more often involved long‐distance moves into unknown ranges. This means that the groups enter areas where they cannot profit from local knowledge. The methods used identify episodes of long stability alternated by sudden changes in meerkats and in general provides insight into long‐term space use. Our methods can be used to analyse long‐term space use, either within or across species.
It is generally accepted that organisms that naturally exploit an ecosystem facilitate coexistence, at least partially, through resource partitioning. Resource availability is, however, highly variable in space and time and as such the extent of resource partitioning must be somewhat dependent on availability. Here we test aspects of resource partitioning at the inter- and intra-specific level, in relation to resource availability in an atypical aquatic environment using an isotope approach. Using closely related key organisms from an ephemeral pond, we test for differences in isotopic signatures between two species of copepod and between sexes within each species, in relation to heterogeneity of basal food resources over the course of the ponds hydroperiod. We show that basal food resource heterogeneity increases over time initially, and then decreases towards the end of the hydroperiod, reflective of the expected evolution of trophic complexity for these systems. Resource partitioning also varied between species and sexes, over the hydroperiod with intra- and inter-specific specialisation relating to resource availability. Intra-specific specialisation was particularly evident in the omnivorous copepod species. Our findings imply that trophic specialisation at both the intra- and inter-specific level is partly driven by basal food resource availability.
Although predation has been identified as an important community driver, the role of predator diversity in structuring estuarine zooplankton has not been assessed. As such, we investigated the effects of two different zooplanktivorous fish species on the estuarine zooplankton community during a 12-day mesocosm study. Three experimental treatments were established, whereby natural zooplankton communities were subject to either (1) no predatory pressure, (2) predation by a pelagic predator (Monodactylus falciformis) or (3) predation by a hyper-benthic predator (Glossogobius callidus). The pelagic feeding M. falciformis fed largely on the numerically dominant mid-water copepod species, Paracartia longipatella. In contrast, the hyper-benthic fish had a greater predatory impact on the less numerically dominant copepod, Pseudodiaptomus hessei, which demonstrates strong diel vertical migration. Variations in prey-population regulation are ascribed to the distinct behavioural differences of the predators, and mediated by the differences in behaviour of the copepod species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.