Abstract. Isotope stratigraphy has become the method of choice for investigating both past ocean temperatures and global ice volume. Lisiecki and Raymo (2005) published a stacked record of 57 globally distributed benthic δ18O records versus age (LR04 stack). In this study LR04 is compared to high-resolution records collected at all of the sites drilled during ODP Leg 154 on the Ceara Rise, in the western equatorial Atlantic Ocean. Newly developed software is used to check data splices of the Ceara Rise sites and better align out-of-splice data with in-splice data. Core images recovered from core table photos are depth and age scaled and greatly assist in the data analysis. The entire splices of ODP sites 925, 926, 927, 928 and 929 were reviewed. Most changes were minor although several were large enough to affect age models based on orbital tuning. A Ceara Rise composite record of benthic δ18O is out of sync with LR04 between 1.80 and 1.90 Ma, where LR04 exhibits two maxima but Ceara Rise data contain only one. The interval between 4.0 and 4.5 Ma in the Ceara Rise compilation is decidedly different from LR04, reflecting both the low amplitude of the signal over this interval and the limited amount of data available for the LR04 stack. A regional difference in benthic δ18O of 0.2 ‰ relative to LR04 was found. Independent tuning of Site 926 images and physical property data to the Laskar et al. (2004) orbital solution and integration of available benthic stable isotope data from the Ceara Rise provides a new regional reference section for the equatorial Atlantic covering the last 5 million years.
We compared in situ and laboratory velocity and attenuation values measured in seafloor sediments from the shallow water delta of the Eel River, California. This region receives a substantial volume of fluvial sediment that is discharged annually onto the shelf. Additionally, a high input of fluvial sediments during storms generates flood deposits that are characterized by thin beds of variable grain-sizes between the 40-and 90-m isobaths. The main objectives of this study were (1) to investigate signatures of seafloor processes on geoacoustic and physical properties, and (2) to evaluate differences between geoacoustic parameters measured in situ at acoustic (7.5 kHz) and in the laboratory at ultrasonic (400 kHz) frequencies. The in situ acoustic measurements were conducted between 60 and 100 m of water depth. Wet-bulk density and porosity profiles were obtained to 1.15 m below seafloor (m bsf) using gravity cores of the mostly cohesive fine-grained sediments across-and along-shelf. Physical and geoacoustic properties from six selected sites obtained on the Eel margin revealed the following. (1) Sound speed and wet-bulk density strongly correlated in most cases. (2) Sediment compaction with depth generally led to increased sound speed and density, while porosity and in situ attenuation values decreased. (3) Sound speed was higher in coarser-than in finer-grained sediments, on a maximum average by 80 m s 31 . (4) In coarse-grained sediments sound speed was higher in the laboratory (1560 m s 31 ) than in situ (1520 m s 31 ). In contrast, average ultrasonic and in situ sound speed in finegrained sediments showed only little differences (both approximately 1480 m s 31 ). (5) Greater attenuation was commonly measured in the laboratory (0.4 and 0.8 dB m 31 kHz 31 ) than in situ (0.02 and 0.65 dB m 31 kHz 31 ), and remained almost constant below 0.4 m bsf. We attributed discrepancies between laboratory ultrasonic and in situ acoustic measurements to a frequency dependence of velocity and attenuation. In addition, laboratory attenuation was most likely enhanced due to scattering of sound waves at heterogeneities that were on the scale of
Abstract. Isotope stratigraphy has become the method of choice for investigating both past ocean temperatures and global ice volume. Lisiecki and Raymo (2005) published a stacked record of 57 globally distributed benthic δ18O records versus age (LR04 stack). In this study LR04 is compared to high resolution records collected at all of the sites drilled during ODP Leg 154 on the Ceara Rise, in the western equatorial Atlantic Ocean. Newly developed software is used to check data splices of the Ceara sites and better align out-of-splice data with in-splice data. Core images recovered from core table photos are depth and age scaled and greatly assist in the data analysis. The entire splices of ODP Sites 925, 926, 927, 928 and 929 were reviewed. Most changes were minor although several were large enough to affect age models based on orbital tuning. A Ceara Rise composite record of benthic δ18O is out of sync with LR04 between 1.80 and 1.90 Ma, where LR04 exhibits 2 maxima but where Ceara Rise contains only 1. The interval between 4.0 and 4.5 Ma in the Ceara Rise compilation is decidedly different from LR04, reflecting both the low amplitude of the signal over this interval and the limited amount of data available for the LR04 stack. A regional difference in benthic δ18O of 0.2 ‰ relative to LR04 was found. Independent tuning of Site 926 images and physical property data to the Laskar et al. 2004 orbital solution and integration of available benthic stable isotope data from the Ceara Rise provides a new regional reference section for the equatorial Atlantic covering the last 5 million years
X‐ray fluorescence (XRF) scanning of marine sediment has the potential to yield near‐continuous and high‐resolution records of elemental abundances, which are often interpreted as proxies for paleoceanographic processes over different time scales. However, many other variables also affect scanning XRF measurements and convolute the quantitative calibrations of element abundances and comparisons of data from different labs. Extensive interlab comparisons of XRF scanning results and calibrations are essential to resolve ambiguities and to understand the best way to interpret the data produced. For this study, we sent a set of seven marine sediment sections (1.5 m each) to be scanned by seven XRF facilities around the world to compare the outcomes amidst a myriad of factors influencing the results. Results of raw element counts per second (cps) were different between labs, but element ratios were more comparable. Four of the labs also scanned a set of homogenized sediment pellets with compositions determined by inductively coupled plasma‐optical emission spectrometry (ICP‐OES) and ICP‐mass spectrometry (MS) to convert the raw XRF element cps to concentrations in two ways: a linear calibration and a log‐ratio calibration. Although both calibration curves are well fit, the results show that the log‐ratio calibrated data are significantly more comparable between labs than the linearly calibrated data. Smaller‐scale (higher‐resolution) features are often not reproducible between the different scans and should be interpreted with caution. Along with guidance on practical calibrations, our study recommends best practices to increase the quality of information that can be derived from scanning XRF to benefit the field of paleoceanography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.