Significant progress has recently been made in calculating muon stopping sites using density functional theory. The technique aims to address two of the most common criticisms of the muon-spin spectroscopy (µ + SR) technique, namely, where in the sample does the muon stop, and what is its effect on its local environment. We have designed and developed a program called MuFinder that enables users to carry out these calculations through a simple graphical user interface (GUI). The procedure for calculating muon sites by generating initial muon positions, relaxing the structures, and then clustering and analysing the resulting candidate sites, can be done entirely within the GUI. The local magnetic field at the muon site can also be computed, allowing the connection between the muon sites obtained and experiment to be made. MuFinder will make these computations significantly more accessible to non-experts and help to establish muon site calculations as a routine part of µ + SR experiments.
Skyrmion-hosting multilayer stacks are promising avenues for applications, although little is known about the depth dependence of the magnetism. We address this by reporting the results of circular dichroic resonant elastic x-ray scattering (CD-REXS) and low-energy muon-spin relaxation (LEµ + SR) measurements on a stack comprising Ta/[CoFeB/MgO/Ta]16 on a Si substrate. Energydependent CD-REXS shows a continuous, monotonic evolution of the domain-wall helicity angle with incident energy, consistent with a three-dimensional hybrid domain-wall-like structure that changes from Néel-like near the surface to Bloch-like deeper within the sample. LE-µ + SR reveals that the magnetic field distribution in the first six layers of the stack is distinct from that in layers further from the surface, quantifying the depth at which the static and dynamic magnetic structure varies. By increasing the applied magnetic field, we find a reduction in the volume occupied by domain walls at all depths, consistent with a crossover into a region dominated by skyrmions above approximately 180 mT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.