The translaminar fracture toughness reflects the damage tolerance of a fibre-reinforced composite under longitudinal tension, which often governs the final failure of structures. One of the main energy-dissipation mechanisms that contributes to the translaminar toughness of composites is the fibre pull-out process. The present study aims to quantify and model the statistical distribution of fibre pull-out lengths formed on the translaminar fracture surface of composites, for the first time in the literature; this is done under different temperatures, so that the relationship between pull-out length distributions, micromechanical properties and the translaminar fracture toughness can be established. The fracture surfaces of cross-ply compact tension specimens tested under three different temperatures have been scanned through X-ray computed tomography to quantify the extent of fibre pull-out on the fracture surfaces; the distribution of pull-out lengths showed alarger average and larger variability with an increase in temperature, which also lead to an increase in translaminar fracture toughness. A similar trend has been captured by the proposed analytical model, which predicts the pull-out length distribution based on the analysis of quasi-fractal idealizations of the fracture surface, yielding an overall accuracy of more than 85%.
This article is part of the theme issue 'Ageing and durability of composite materials'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.