Water content reflectometers use time domain reflectometry (TDR) 2003) also contributed to the attractiveness of TDR. to estimate the apparent permittivity of soil, which in turn can be related to the soil water content. The objective of this study is to The relatively high cost of TDR, brought about by develop a physical model for water content reflectometers. The length the need for a separate pulse and sampling unit, has of the sensor rods and the delay time of the circuitry in the probe head limited its use for routine monitoring purposes. In reare the two unknown parameters. The two parameters are determined sponse, cheaper electromagnetic sensors have been deboth analytically, using sensor readings in air and deionized water, and veloped such as capacitance sensors (e.g., Dean et al., by optimization, using air and non-conductive fluids. The calibrated 1987; Paltineanu and Starr, 1997; Kelleners et al., 2004), parameters are used to calculate the apparent permittivity as a funcimpedance sensors (Hilhorst et al., 1993; Gaskin and
Capacitance probe sensors are an attractive electromagnetic technique for estimating soil water content. There is concern, however, about the influence of soil salinity and soil temperature on the sensors. We present an electric circuit model that relates the sensor frequency to the permittivity of the medium and that is able to correct for dielectric losses due to ionic conductivity and relaxation. The circuit inductance L is optimized using sensor readings in a modified setup where ceramic capacitors replace the sensor's capacitance plates. The three other parameters in the model are optimized using sensor readings in a range of nonconductive media with different permittivities. The geometric factor for the plastic access tube gp is higher than the geometric factor for the medium gm, indicating that most of the electromagnetic field does not go beyond the access tube. The effect of ionic conductivity on the sensor readings is assessed by mixing salts in three of the media. The influence is profound. The sensor frequency decreases with increasing conductivity. The effect is most pronounced for the medium with the lowest permittivity. The circuit model is able to correct for the conductivity effect on the sensors. However, as the dielectric losses increase, the frequency becomes relatively insensitive to permittivity and small inaccuracies in the measured frequency or in the sensor constants result in large errors in the calculated permittivity. Calibration of the capacitance sensors can be simplified by fixing two of the constants and calculating the other two using sensor readings in air and water.
In subalpine watersheds of the intermountain western United States, snowpack melt is the dominant water input to the hydrologic system. The primary focus of this work is to understand the partitioning of water from the snowpack during the snowmelt period and through the remainder of the growing season. We conducted a time‐lapse electrical resistivity tomography (ERT) study in conjunction with a water budget analysis to track water from the snow‐on through snow‐off season (May–August 2015). Seismic velocities provided an estimate of regolith thickness while transpiration measurements from sap flow in conifer trees provided insight into root water uptake. We observed four hydrologic process‐periods and found that deep flow and tree water fluxes are the primary pathways through which water moves off of the hillslope. Overland flow and interflow were negligible. We observed temporal changes in vadose zone water content more than 3.0 m below the surface. Our results show that vertical flow through the thin soil mantle overlaying coarse colluvial regolith was the primary pathway to a local unconfined aquifer.
The ability to quantify soil-atmosphere water and energy exchange is important in understanding agricultural and natural ecosystems, as well as the earth\u27s climate. We developed a one-dimensional vertical model that calculates solar radiation, canopy energy balance, surface energy balance, snowpack dynamics, soil water flow, and snow–soil–bedrock heat exchange, including soil water freezing. The processes are loosely coupled (solved sequentially) to limit the computational burden. The model was applied to describe water and energy dynamics for a northeast-facing mountain slope in the Dry Creek Experimental Watershed near Boise, ID. Calibration was achieved by optimizing the saturated soil hydraulic conductivity. Validation results showed that the model can successfully calculate seasonal dynamics in snow height, soil water content, and soil temperature. Both the calibration and validation years confirmed earlier results that evapotranspiration on the northeast-facing slope consumes approximately 60% of yearly precipitation, while deep percolation from the soil profile constitutes about 40% of yearly precipitation
Integrated watershed models can be used to calculate streamflow generation in snow‐dominated mountainous catchments. Parameterization of water flow is often complicated by the lack of information on subsurface hydraulic properties. In this study, bulk density optimization was used to determine hydraulic parameters for the upper and lower regolith in the GEOtop model. The methodology was tested in two small catchments in the Dry Creek Watershed in Idaho and the Libby Creek Watershed in Wyoming. Modelling efficiencies for profile‐average soil–water content for the two catchments were between 0.52 and 0.64. Modelling efficiencies for stream discharge (cumulative stream discharge) were 0.45 (0.91) and 0.54 (0.94) for the Idaho and Wyoming catchments, respectively. The calculated hydraulic properties suggest that lateral flow across the upper–lower regolith interface is an important driver of streamflow in both the Idaho and Wyoming watersheds. The overall calibration procedure is computationally efficient because only two bulk density values are optimized. The two‐parameter calibration procedure was complicated by uncertainty in hydraulic conductivity anisotropy. Different upper regolith hydraulic conductivity anisotropy factors had to be tested in order to describe streamflow in both catchments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.