BackgroundAphid infestation of switchgrass (Panicum virgatum) has the potential to reduce yields and biomass quality. Although switchgrass-greenbug (Schizaphis graminum; GB) interactions have been studied at the whole plant level, little information is available on plant defense responses at the molecular level.ResultsThe global transcriptomic response of switchgrass cv Summer to GB was monitored by RNA-Seq in infested and control (uninfested) plants harvested at 5, 10, and 15 days after infestation (DAI). Differentially expressed genes (DEGs) in infested plants were analyzed relative to control uninfested plants at each time point. DEGs in GB-infested plants induced by 5-DAI included an upregulation of reactive burst oxidases and several cell wall receptors. Expression changes in genes linked to redox metabolism, cell wall structure, and hormone biosynthesis were also observed by 5-DAI. At 10-DAI, network analysis indicated a massive upregulation of defense-associated genes, including NAC, WRKY, and MYB classes of transcription factors and potential ancillary signaling molecules such as leucine aminopeptidases. Molecular evidence for loss of chloroplastic functions was also detected at this time point. Supporting these molecular changes, chlorophyll content was significantly decreased, and ROS levels were elevated in infested plants 10-DAI. Total peroxidase and laccase activities were elevated in infested plants at 10-DAI relative to control uninfested plants. The net result appeared to be a broad scale defensive response that led to an apparent reduction in C and N assimilation and a potential redirection of nutrients away from GB and towards the production of defensive compounds, such as pipecolic acid, chlorogenic acid, and trehalose by 10-DAI. By 15-DAI, evidence of recovery in primary metabolism was noted based on transcript abundances for genes associated with carbon, nitrogen, and nutrient assimilation.ConclusionsExtensive remodeling of the plant transcriptome and the production of ROS and several defensive metabolites in an upland switchgrass cultivar were observed in response to GB feeding. The early loss and apparent recovery in primary metabolism by 15-DAI would suggest that these transcriptional changes in later stages of GB infestation could underlie the recovery response categorized for this switchgrass cultivar. These results can be exploited to develop switchgrass lines with more durable resistance to GB and potentially other aphids.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-017-0998-2) contains supplementary material, which is available to authorized users.
The soybean aphid, Aphis glycines Matsumura, has become the most significant soybean [Glycine max (L.) Merrill] insect pest in the north central soybean production region of North America. The objectives of this research were to measure selected genotypes for resistance to the soybean aphid in the later vegetative and reproductive stages under field conditions, and confirm the presence of tolerance in KS4202. The results from 2007 to 2011 indicate that KS4202 can support aphid populations with minimal yield loss at levels where significant yield loss would be expected in most other genotypes. The common Nebraska cultivar, 'Asgrow 2703', appears to show signs of tolerance as well. None of the yield parameters were significantly different between the aphid infested and noninfested treatments. Based on our results, genotypes may compensate for aphid feeding in different ways. Asgrow 2703 appears to produce a similar number of seeds as its noninfested counterpart, although the seeds produced are slightly smaller. Field evaluation of tolerance in KS4202 indicated a yield loss of only 13% at 34,585-53,508 cumulative aphid-days, when 24-36% yield loss would have been expected.
Prochaska, Travis J.; Donze-Reiner, Teresa; Marchi-Werle, L.; Palmer, N. A.; Hunt, Thomas E.; Sarath, Gautam; and Heng-Moss, Tiffany, "Transcriptional responses of tolerant and susceptible soybeans to soybean aphid (Aphis glycines Matsumura) herbivory" (2015). Abstract The soybean aphid, Aphis glycines Matsumura, was introduced in 2000 to North America and has become one of the most significant pests to soybean, Glycine max (L.) Merrill, production. Possible solutions to this problem are the use of resistant plants and the understanding of the genes involved in plant resistance. In this study, we sought to better understand the genes involved in the tolerance response of soybean plants to the soybean aphid, utilizing tolerant (KS4202) and susceptible (K-03-4686) plants. Studies were conducted under greenhouse conditions. Leaf samples of both tolerant and susceptible plants were collected at day 5 and day 15 after infestation and analyzed by sequencing-by-synthesis on an Illumina GA II X instrument. In the tolerant genotype, 3 and 36 genes were found to be differentially expressed in the infested plants compared to the control treatments at day 5 and day 15, respectively. A similar comparison in the susceptible genotype revealed 0 and 11 genes to be differentially expressed at day 5 and day 15, respectively. Predominately, genes related to plant defense, such as WRKY transcription factors, peroxidases, and cytochrome p450s, were upregulated in the tolerant genotype 15 days post-infestation by aphids. In contrast, none of these genes were similarly up-regulated in the susceptible plants, suggesting that consistent elevation of defense responses is important to plant tolerance. However, significant genotypic differences in global gene expression were also found when transcriptomes from control uninfested plants were compared at both day 5 and 15. qPCR validation of select genes confirmed our RNA-seq data. These comparisons indicate that potentially broader regulation of transcriptomes also contributes to the tolerance response and provides data that the tolerant genotype (KS4202) could be useful in soybean breeding programs trying to minimize production losses accruing from soybean aphid feeding.
Soybean aphid, Aphis glycines Matsumura, remains the key insect pest of soybean, Glycine max (L.) Merrill, in the north-central United States. Management of this pest has relied primarily on scouting and application of foliar insecticides based on an economic threshold (ET) of 250 aphids per plant. This review explains why this ET remains valid for soybean aphid management, despite changes in crop value and input costs. In particular, we review how soybean aphid impacts soybean yield, the role of biology and economics in recommendations for soybean aphid management, and the shortand long-term consequences of inappropriately timed insecticide applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.