A number of severe flooding events have occurred both in South Africa and internationally in recent years. Furthermore, changes in both the intensity and frequency of extreme rainfall events have been documented, both locally and internationally, associated with climate change. The recent loss of life, destruction of infrastructure, and associated economic losses caused by flooding, compounded by the probability of increased rainfall variability in the future, highlight that design flood estimation (DFE) techniques within South Africa are outdated and in need of revision. A National Flood Studies Programme (NFSP) has recently been initiated to overhaul DFE procedures in South Africa. One of the recommendations in the NFSP is the further development of a continuous simulation modelling (CSM) system for DFE in South Africa. The focus of this paper is a review of CSM techniques for DFE, to guide further development for application in South Africa. An introduction to DFE, and particularly the CSM approach, is presented, followed by a brief overview of DFE techniques used in South Africa, leading into a more detailed summary of CSM for DFE within South Africa to date. This is followed by a review of the development and application of CSM methods for DFE internationally, with a focus on the United Kingdom and Australia, where methods have been developed with the intention of national scale implementation. It is important to highlight that there is a plethora of CSM methods available internationally and this review is not exhaustive; it focuses on and identifies some of the strengths and weaknesses of several popular methods, particularly those intended for national scale application, as the intended outcome from this review is to identify a path towards the development of a usable national scale CSM system for DFE in South Africa. Emphasis on a usable method is important, considering the reality that, despite promising results, numerous benefits, and national scale methods being developed, it appears that the CSM method for DFE is rarely used in practice.
Design flood estimation (DFE) is essential in the planning and design of hydraulic structures. In South Africa, outdated methods are widely applied for DFE. In this paper the potential of a continuous simulation modelling (CSM) approach to DFE in South Africa, using the daily time-step ACRU agrohydrological model, is investigated. The paper focuses on the links and similarities between the SCS-SA and ACRU models and the subsequent preliminary investigations that were undertaken to account for and incorporate the land cover classes, including land management practices and hydrological condition, of the SCS-SA model into the ACRU CSM approach. The approach to this study was to investigate how design volumes simulated by the SCS-SA model for various land management practices or conditions could be simulated by the ACRU model. Since peak discharge estimation in both models is directly dependent on simulated volumes, this preliminary study focused only on design runoff volumes, with subsequent investigations on peak discharge required in future research. In the absence of observed data, design runoff volumes and changes in design runoff volumes, as simulated by the SCS-SA model, were used as a substitute for observed data, i.e., as a reference, to achieve similar design runoff volumes and changes in design volumes in the ACRU model. This was achieved by adjusting relevant input parameters in the ACRU model to represent the change in management practice or hydrological condition, as represented in the SCS-SA model. Following a sensitivity analysis of relevant ACRU parameters, calibration of 2 selected parameters against SCS-SA CN values for selected land cover classes was performed. A strong linear relationship (R 2 = 0.94) between these ACRU parameters and SCS-SA CNs for selected land cover classes was found and consequently specific rules and equations were developed to represent SCS-SA land cover classes in ACRU. Recommendations are made to further validate and verify the approach and to further the development of a CSM system for DFE in South Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.