A program of diet plus lifestyle activity may offer similar health benefits and be a suitable alternative to diet plus structured aerobic activity for obese women.
Today's elite hockey players are physically bigger and have improved levels of physiological fitness when compared with their predecessors. Correspondingly, previous ice hockey studies that have become widely referenced may have little relevance to current players and the way the game is presently played. A great need exists to apply exercise science to the game of ice hockey. Although much has been written about the physiology of ice hockey, there is little information based on well controlled studies. Particularly, there is a paucity of knowledge concerning optimal training schedules, training specificity, recovery profiles and seasonal detraining. Moreover, the reports that do exist have attempted to make comparisons across all levels of skill and talent. Thus, fundamental questions remain as to actual physiological exercise response and specialised training programmes for ice hockey players, particularly at the elite level. There is a demand for new properly designed experiments to find answers pertaining to the appropriate training methods for today's ice hockey players. Future research directions should consider the relationships between performance and such variables as neuromuscular skills, strength, power, peripheral adaptations, travel, hydration, detraining and sport-specific training programmes. Incidence and severity of injury among ice hockey players in relation to fatigue and fitness must also be investigated. Much of the information currently used in ice hockey will remain speculative and anecdotal until these studies are conducted.
Sweat samples were collected from the forearms of eight male volunteers using light gauze pads applied for 20-min periods. Preliminary trials indicated that this technique yielded realistic figures for both sweat volume and sweat composition. Tests were conducted under three conditions: a) outdoor exercise, cool environment; b) indoor exercise, normal room temperatures; and c) sauna exposure. In all environments, proximal forearm samples indicated a larger sweat secretion than distal forearm or hand samples. [Mg2+] decreased as sweat flow increased, but after allowance for interindividual differences of sweat volume, [Na+], [K+], [Ca2+], and [Cl-] were independent of sweat flow rates. The differential effect of sweat flow suggests active regulation rather than contamination. Interindividual differences of sweat composition could not be explained in terms of differences in personal fitness. Sauna bathing yielded sweat with a higher [Mg2+] and [Ca2+] content than did exercise; however, [Na+], [K+], and [Cl-] were similar for the three experimental conditions. Again, the data are best explained in terms of an active regulation of sweat composition. Total ionic losses do not seem sufficient to deplete body mineral reserves unless many days of training are undertaken in a hot climate.
Markers of a heavy increase in training were examined in ten highly trained distance runners (mean(s.d.) age 29.8(1.7) years, maximal oxygen intake 65.3 ml kg-minu-, personal best 10-km time 31 min 4s) who undertook a deliberate 38% increment of training over a 3-week period. Their running performance did not improve, and six of the ten subjects developed sustained fatigue, suggesting that training was excessive, although the full clinical picture of overtraining did not develop. The Profile of Mood States was the best single marker of disturbed function, indicating increased fatigue and decreased vigour. There were no useful changes of resting heart rate or perceived exertion during submaximal running, sleep was undisturbed, and there were no orthopaedic injuries. Two subjects developed rhinoviral infections following the heavy training, and a third complained of symptoms that were diagnosed 2 weeks later as exercise-induced asthma. The increase of serum cortisol normally induced by 30 min of submaximal exercise was no longer seen when the same acute exercise was performed after heavy training. Resting lymphocyte proliferation tended to increase in response to phytohaematoglutinin (PHA) and concanavalin A (Con A), the ratio of helper to suppressor cells (H/S) decreased, and pokeweed mitogen induced smaller increases in IgG and IgM synthesis. Whereas before heavy training, PHAstimulated lymphocyte proliferation was unchanged by 30 min of acute submaximal exercise, after 3 weeks of heavy training the same bout of exercise caused an 18% suppression of proliferation. Likewise, heavy training brought about a decrease of T-lymphocytes in response to acute submaximal exercise, but an abolition of the acute exercise-induced decrease in the HIS ratio. The previously observed exercise-induced decrease of IgG synthesis did not occur when the same acute bout of exercise was performed after heavy training. We conclude that such minor and transient changes of immune function may possibly be a warning that training is becoming excessive, but they have only a limited significance for overall immune function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.