Our objective was to determine the potentially anabolic effects of orally administered recombinant human insulin-link growth factor I (rhIGF-I)on small intestinal growth in formula-fed neonatal pigs. Unsuckled neonatal pigs received formula or formula containing added rhIGF-I (3.5 mg.kg-1.day-1) from birth to 4 days of age. Pigs in both groups were fed 30 ml/kg formula every 2 h on day 1 and then every 4 h on days 2-4, and blood was sampled daily. Oral administration of rhIGF-I to formula-fed neonatal pigs increased small intestinal weight, protein, and DNA content,but not length. Jejunal and ileal villus height, but not crypt depth or muscularis thickness, also were increased by oral rhIGF-I administration. Neither the circulating concentration of IGF-I nor the IGF-binding proteins differed between control and oral rhIGF-treated pigs, suggesting that the absorption of orally administered rhIGF-I from the intestinal lumen into the peripheral circulation was limited. Our results demonstrate that oral administration of rhIGF-I during the first 4 days after birth significantly increased small intestinal mucosal growth in formula-fed neonatal pigs. These results suggest that oral administration of rhIGF-I may be a viable therapeutic approach to enhance intestinal growth in neonates.
Consumer perception of organic cow milk is associated with the assumption that organic milk differs from conventionally produced milk. The value associated with this difference justifies the premium retail price for organic milk. It includes the perceptions that organic dairy farming is kinder to the environment, animals, and people; that organic milk products are produced without the use of antibiotics, added hormones, synthetic chemicals, and genetic modification; and that they may have potential benefits for human health. Controlled studies investigating whether differences exist between organic and conventionally produced milk have so far been largely equivocal due principally to the complexity of the research question and the number of factors that can influence milk composition. A main complication is that farming practices and their effects differ depending on country, region, year, and season between and within organic and conventional systems. Factors influencing milk composition (e.g., diet, breed, and stage of lactation) have been studied individually, whereas interactions between multiple factors have been largely ignored. Studies that fail to consider that factors other than the farming system (organic vs. conventional) could have caused or contributed to the reported differences in milk composition make it impossible to determine whether a system-related difference exists between organic and conventional milk. Milk fatty acid composition has been a central research area when comparing organic and conventional milk largely because the milk fatty acid profile responds rapidly and is very sensitive to changes in diet. Consequently, the effect of farming practices (high input vs. low input) rather than farming system (organic vs. conventional) determines milk fatty acid profile, and similar results are seen between low-input organic and low-input conventional milks. This confounds our ability to develop an analytical method to distinguish organic from conventionally produced milk and provide product verification. Lack of research on interactions between several influential factors and differences in trial complexity and consistency between studies (e.g., sampling period, sample size, reporting of experimental conditions) complicate data interpretation and prevent us from making unequivocal conclusions. The first part of this review provides a detailed summary of individual factors known to influence milk composition. The second part presents an overview of studies that have compared organic and conventional milk and discusses their findings within the framework of the various factors presented in part one.
The elevated rate of muscle protein deposition in the neonate is largely due to an enhanced stimulation of skeletal muscle protein synthesis by feeding. To examine the role of insulin in this response, hyperinsulinemic-euglycemic-amino acid clamps were performed in 7- and 26-day-old pigs. Pigs were infused with 0, 30, 100, or 1,000 ng ⋅ kg−0.66 ⋅ min−1of insulin to mimic the plasma insulin levels observed under fasted, fed, refed, and supraphysiological conditions, respectively. Whole body amino acid disposal was determined from the rate of infusion of an amino acid mixture necessary to maintain plasma essential amino acid concentrations near their basal fasting levels. A flooding dose ofl-[4-3H]phenylalanine was used to measure skeletal muscle protein synthesis. Whole body amino acid disposal increased progressively as the insulin infusion rate increased, and this response was greater in 7- than in 26-day-old pigs. Skeletal muscle protein synthesis was stimulated by insulin, and this response was maximal at a low insulin infusion rate (30 ng ⋅ kg−0.66 ⋅ min−1). The stimulation of muscle protein synthesis by insulin was also greater in 7- than in 26- day-old pigs. These data suggest that muscle protein synthesis is more sensitive to insulin than whole body amino acid disposal. The results further suggest that insulin is a central regulatory factor in the elevated rate of muscle protein deposition and the increased response of skeletal muscle protein synthesis to feeding in the neonate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.