Nonlinear dynamics can give rise, via the processes of self-organisation and pattern formation, to the spontaneous manifestation of order in open and complex systems far from equilibrium. Self-organising systems, transforming the inflow of energy into information, are ubiquitously found in current topical areas of science ranging from brainwave entrainment and neuromorphic computing to energy-efficient data storage technologies. In the latter, magnetic materials play a pivotal role combining very fast switching with permanent retention of information. However, it has been shown that, at very short time scales, magnetisation dynamics become chaotic due to internal instabilities, resulting in incoherent spin-wave excitations that ultimately destroy magnetic ordering. Here, contrary to all expectations, we show that such chaos gives rise to a periodic pattern of reversed magnetic domains, with a feature size far smaller than the spatial extent of the excitation. We explain this pattern as a result of phase-synchronisation of magnon-polaron waves, driven by strong coupling of magnetic and elastic modes. Our results reveal not only the peculiar formation and evolution of magnon-polarons at short time-scales, but also present a novel mechanism of magnetization reversal driven by coherent packets of short-wavelength quasiparticles.Finding methods that enable fast, efficient and long-lasting reversal of magnetisation direction represents a major topic of research in condensed matter physics with obvious technological applications [1]. The most theoreticallystraightforward but also practical approach for switching magnetisation 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.