The paper presents the finite element method model (FEM) which allows the forecasting of the evolution of damage in a concrete cover together with experimental verification of the model. The objective of the model is to define the corrosive volume strain tensor rate effected by corrosion, which comprises the accumulation of corrosion products in pore spaces as well as in micro-cracks which develop at the initial stage of cover degradation. The propagation of damage in the contact zone was captured by taking into account the function describing the degradation of the interface transition zone depending on the cover tightening time–critical time. The method of determining the critical time along with the method of taking into account the effective electrochemical equivalent of iron was also analyzed in this paper. The work presents the experimental verification of the model using an accelerated corrosion test of reinforcement in concrete and strain measurements with optical methods. The conducted tests demonstrate satisfactory compliance of the model with the test results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.