Abstract. The advancements in communication software and hardware is increasing the amount of information in the form of text, image, audio and video being shared. This increase arise the issue of protecting the intellectual property. This paper studies the protection of video signals through watermarking. The system proposed uses a combination of visual cryptography and wavelets to create a nested watermark which is embedded into the raw uncompressed video signal using a geometric warping technology. To improve robustness against compression, the method embeds the watermark in relevant area using a block selection method. The experimental results prove that the proposed system is efficient in terms of capacity and robustness against various attacks.
One of the most common and curable types of cancer in women is cervical cancer, a common chronic condition. Pap smear images is a common way for screening the cervical cancer. It does not present with symptoms until the disease has advanced stages, cervical cancer cannot be detected in its early stages. Because of this, accurate staging will make it easier to give the patient the right amount of treatment. In this paper proposes the Anisotropic Diffusion Filter has been used to improve the Pap smear image by removing noise and preserving the image's edges. The contrast of a Pap smear image has been enhanced using Histogram Equalization. The enhanced image has been segmented using Improved Weighted Fuzzy C-means clustering to make it easier to identify the effective features. As a result, the effective features are extracted from the segmented region and used by a Restricted Boltzmann Machine classifier based on Deep Learning to classify the cancer. The performance of the proposed cervical cancer detection system can be measured in terms of sensitivity, specificity, F-measure and accuracy. The performance measures for the proposed system can be achieves 95.3% accuracy, 88.6% specificity, 89.13% precision, 88.56% recall, and 89.7% F-measure respectively. Based on simulation results, the proposed method performs better than conventional methods such as RDVLNN, Random Forest (RF), Extreme Learning Machine (ELM), and Support Vector Machine (SVM) for detecting cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.