Gram-positive, endospore-forming Bacillus thuringiensis-like strains were isolated from 95 of 413 samples collected at the 0-5 cm depth of noncultivated soils and stagnant or dried-up ponds as well as from dust from stored grain products in South Central United States. Based on the production of parasporal crystals, 25 isolates were identified as B. thuringiensis after examining 227 B. thuringiensis-like colonies. The greatest proportion of samples yielding B. thuringiensis were from the dust from grain storage. The sodium acetate selective medium, heat processing, and crystal staining used in the initial screening revealed diverse populations of B. thuringiensis, which were categorized into distinct crystal morphological groups. Sugar fermentation, antibiotic sensitivity, growth characteristics and PCR studies showed diversity among the isolates that were distributed among 25 of the 58 known strains. The most frequently isolated strains were kurstaki, aizawai, morrisoni, thuringiensis, sotto and kenyae that together represented more than 90% of the characterized isolates. PCR analysis using 30 family primer pairs for cry and cyt genes showed that the frequency of the cry1 gene (62%) was predominant followed by the cry2 genes (30%), and the rest (8%) were other cry gene types, such as cry3, cry4, cry10, cry11, cry14, cry15, cry20, cry24 and cry26. Both cyt1 and -2 genes were also detected. Several isolates showed PCR products on the gel that were not consistent with the expected sizes of nucleotides targeted by the primers. These were suggestive of nonspecific amplifications and were not used in the characterization process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.