We search for an isotropic stochastic gravitational-wave background (GWB) in the 12.5 yr pulsar-timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. Our analysis finds strong evidence of a stochastic process, modeled as a power law, with common amplitude and spectral slope across pulsars. Under our fiducial model, the Bayesian posterior of the amplitude for an f −2/3 power-law spectrum, expressed as the characteristic GW strain, has median 1.92 × 10−15 and 5%–95% quantiles of 1.37–2.67 × 10−15 at a reference frequency of f yr = 1 yr − 1 ; the Bayes factor in favor of the common-spectrum process versus independent red-noise processes in each pulsar exceeds 10,000. However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with general relativity. We find that the process has neither monopolar nor dipolar correlations, which may arise from, for example, reference clock or solar system ephemeris systematics, respectively. The amplitude posterior has significant support above previously reported upper limits; we explain this in terms of the Bayesian priors assumed for intrinsic pulsar red noise. We examine potential implications for the supermassive black hole binary population under the hypothesis that the signal is indeed astrophysical in nature.
The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p3×10 −4 ) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0 6-0 8) object displaying prominent Balmer and [O III] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m r′ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter 4 kpc and a stellar mass of M * ∼(4-7)×107 M e , assuming a mass-to-light ratio between 2 to 3 M e L e −1 . Based on the Hα flux, we estimate the star formation rate of the host to be 0.4 M e yr −1 and a substantial host dispersion measure (DM) depth 324 pc cm −3 . The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102's location reported by Marcote et al. is offset from the galaxy's center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.
Fast radio bursts 1,2 are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients 3 . So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources 4 or the presence of peculiar field stars 5 or galaxies 4 . These attempts have not resulted in an unambiguous association 6,7 with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source 8-11 , using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with nonthermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts 12,13 and tidal disruption events 14 . However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.The repetition of bursts from FRB 121102 9,10 enabled a targeted interferometric localization campaign with the Karl G. Jansky Very Large Array (VLA) in concert with single-dish observations using the 305-m William E. Gordon Telescope at the Arecibo Observatory. We searched for bursts in VLA data with 5-ms sampling using both beam-forming and imaging techniques 15 (see Methods). In over 83 h of VLA observations distributed over six months, we detected nine bursts from FRB 121102 in the 2.5-3.5-GHz band with signalto-noise ratios ranging from 10 to 150, all at a consistent sky position.
Fast radio bursts (FRBs) are millisecond-duration, extragalactic radio flashes of unknown physical origin [1][2][3] . FRB 121102, the only known repeating FRB source [4][5][6] , has been localized to a star-forming region in a dwarf galaxy 7-9 at redshift z = 0.193, and is spatially coincident with a compact, persistent radio source 7,10 . The origin of the bursts, the nature of the persistent source, and the properties of the local environment are still debated. Here we present bursts that show ∼100% linearly polarized emission at a very high and variable Faraday rotation measure in the source frame: RM src = +1.46 × 10 5 rad m −2 and +1.33 × 10 5 rad m −2 at epochs separated by 7 months, in addition to narrow ( 30 µs) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, while the short burst durations argue for a neutron star origin. Such large rotation measures have, until now, only been observed 11,12 in the vicinities of massive black holes (M BH 10 4 M ). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole 10 . The bursts may thus come from a neutron star in such an environment. However, the observed properties may also be explainable in other models, such as a highly magnetized wind nebula 13 or supernova remnant 14 surrounding a young neutron star. 2Using the 305-m William E. Gordon Telescope at the Arecibo Observatory, we detected 16 bursts from FRB 121102 at radio frequencies from 4.1 − 4.9 GHz (Table 1). The data recorder provided complete polarization parameters with 10.24-µs time resolution. See Methods and Extended Data Figs. 1-6 for observation and analysis details.The 4.5-GHz bursts have typical widths 1 ms, which are narrower than the 2 to 9-ms bursts previously detected at lower frequencies 5,15 . In some cases they show multiple components and structure close to the sampling time of the data. Burst #6 is particularly striking, with a width of 30 µs, which constrains the size of the emitting region to 10 km, modulo geometric and relativistic effects. Evolution in burst morphology with frequency complicates the determination 5 of dispersion measure (DM = d 0 n e (l) dl), but aligning the narrow component in Burst #6 results in DM= 559.7 ± 0.1 pc cm −3 , which is consistent 4,5,15,16 with other bursts detected since 2012, and suggests that any bona fide dispersion measure variations are at the 1% level.After correcting for Faraday rotation, and accounting for ∼2% depolarization from the finite channel widths, the bursts are consistently ∼100% linearly polarized (Fig. 1). The polarization angles PA = PA ∞ + θ (where PA ∞ is a reference angle at infinite frequency, θ = RMλ 2 is the rotation angle of the electric field vector and λ is the observing wavelength) are flat across the observed frequency range and burst envelopes (∆PA 5 • ms −1 ). This could mean that the burst durations reflect the timescale of the emission process and n...
We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11-year dataset from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the Solar System ephemeris (SSE) model used, and that SSE errors arXiv:1801.02617v2 [astro-ph.HE] 7 Jun 2018 2 THE NANOGRAV COLLABORATION can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first PTA constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW strain amplitude of A GWB < 1.45 × 10 −15 at a frequency of f = 1-yr −1 for a fiducial f −2/3 power-law spectrum, and with inter-pulsar correlations modeled. This is a factor of ∼ 2 improvement over the NANOGrav 9-year limit, calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass-density in galactic cores, the eccentricity of SMBH binaries, and SMBH-galactic-bulge scaling relationships. We constrain cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of Gµ < 5.3 × 10 −11 -a factor of ∼ 2 better than the published NANOGrav 9-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation Universe) is Ω GWB ( f )h 2 < 3.4 × 10 −10 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.