Human-caused changes in land-use and land-cover (LULC) are most visible in metropolitan areas, when the majority of the land has been converted to urban land or built up. This study presents a modeling approach for simulating the spatiotemporal distribution of urban microclimate with the Weather Research and Forecasting (WRF) model using four urban parameterization schemes, namely a bulk, urban canopy model (UCM), building effect parameterization (BEP), and building energy model (BEM). The WRF model is set-up at 1 km spatial resolutions over the Jakarta Metropolitan Area to study the model’s sensitivity to the usage of alternative LULC datasets, the default MODIS and its modification 2017. The results show that the UCM and BEM schemes appear to be reliable in mapping urban weather conditions for all meteorological parameters examined. Given that the LULC categories in urban areas remained unchanged, changing the LULC in the model did not result in a large difference in error. The LULC dataset, on the other hand, can be used as information related to suburban areas that continue to grow in concurrently with urbanization. LULC updates can provide insight into how much temperature rise is occurring in urban areas and how it affects climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.