Anthropogenic climate change has caused increased soil salinity in South Asia due to saltwater intrusion caused by sea level rise, input of fertilizers with high salt index, and irrigation malpractices, etc. Salinity has a multitude of impacts on plant and soil processes, leading to alterations in gas fluxes and rice productivity. The remedial measures adopted on salt-affected soils to reduce the salinity effect could enhance future climate change if they cause an increase in greenhouse gas (GHG) emissions. This study was conducted to find the best agricultural management practices (BMPs) for salt-affected soils in rice cropping systems (i.e. the major cropping system in Asia) in four South Asian countries (Sri Lanka, India, Bangladesh and Pakistan) considering net GHG emissions and other socioeconomic benefits associated with the adopted measures. The salinity-affected sites were selected based on available information (e.g. agricultural statistics and maps). Site-level measurements on soil parameters and GHG emissions were made in control- and managed plots and farmer surveys were conducted. Although organic amendments ameliorated salinity, it could cause a net increase in carbon dioxide or methane emissions depending on the soil conditions, particularly during the initial stages. This impact could be ameliorated by combining organic amendments with other management practices. In the Indo-Gangetic region, poor soil drainage causing anaerobic conditions favoured nitrous oxide emission under low to medium salinity. Yield losses and emissions in high salinity sites were controlled through organic amendment, irrigation and rice-fallow cropping sequence. The combination of transplanting of rice seedlings, the addition of organic matter, and intermittent irrigated water levels was identified as the BMP for Sri Lankan farmers. The outcome of this project will be used to raise awareness among farmers and policymakers.
Geographical position makes Bangladesh globally as one of the most vulnerable countries to climate change. It is observed that climate change has become a burning issue jeopardizing the agricultural production in the country. Considering the issue, adoption of climate smart agriculture (CSA) is indispensable for mitigating climate change by reducing emissions, capturing the atmospheric carbon and storing it in biomass and soil. The study reviewed the literature to evaluate the potentiality of agroforestry practices as climate smart agriculture to mitigate climate change impacts. Agroforestry has traditionally contributed to climate resilience in Bangladesh by integrating trees and/or crops into different land use practices. Agroforestry systems enhance resilience to climate change through increasing tree cover, carbon sequestration, increasing production, reducing threats to associated crops, creating favourable microclimate to support associated crops, reducing harvest pressure on natural forests, conserving biodiversity and cycling nutrients. Globally 23 countries recognize agroforestry as a mitigation priority, whereas 29 as an adaptation priority. Bangladesh has potential to expand agroforestry practices to mitigate climate change and boost food security. From socioeconomic and ecological point of views as well, agroforestry offers strong potential to evolve climate smart agricultural practices supporting food security, and adaptation and mitigation. Agroforestry practices should increase in climate vulnerable agroecosystems of Bangladesh. Int. J. Agril. Res. Innov. Tech. 11(1): 49-59, June 2021
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.