A series of experimental studies utilizing approximately 2200 test subjects has led to the development of a general empirical model for the prediction of passenger ride discomfort in the presence of complex noise and vibration inputs. The ranges of vibration and noise stimuli used to derive the model included the amplitudes and frequencies that are known to most influence passenger comfort. The ride quality model accounts for the effects of combined axis vibrations (up to three axes simultaneously) and includes corrections for the effect of vibration duration and interior noise. Output of the model consists of an estimate of the passenger discomfort produced by a given noise and/or vibration environment. The discomfort estimate is measured along a continuous scale that spans the range from below discomfort threshold to values of discomfort that are far above discomfort threshold.
A laboratory investigation was directed at the development of criteria for the prediction of ride quality in a noise-vibration environment. The stimuli for the study consisted of octave bands of noise centered at 500 and 2000 Hz and vertical floor vibrations composed of either 5 Hz sinusoidal vibration, or random vibrations centered at 5 Hz and with a 5 Hz bandwidth. The noise stimuli were presented at A-weighted sound pressure levels ranging from ambient to 95 dB and the vibration and acceleration levels ranging from 0.02--0.13 grms. Results indicated that the total subjective discomfort response could be divided into two subjective components. One component consisted of subjective discomfort to vibration and was found to be a linear function of vibration acceleration level. The other component consisted of discomfort due to noise which varied logarithmically with noise level (power relationship). However, the magnitude of the noise discomfort component was dependent upon the level of vibration present in the combined environment. Based on the experimental results, a model of subjective discomfort that accounted for the interdependence of noise and vibration was developed. The model was then used to develop a set of criteria (constant discomfort) curves that illustrate the basic design tradeoffs available between noise and vibration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.