The magnetometer (MAG) on Voyager 1 (V1 ) has been sampling the interstellar magnetic field (ISMF) since August 2012. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 astronomical unit, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density are compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.
We discuss the observations and simulations related to the interaction of the solar wind (SW) and local interstellar medium (LISM), and the interstellar magnetic field draping around the heliopause (HP). This Letter sheds light on some processes that are not directly seen in the Voyager data. Special attention is paid to the magnetic field behavior at the HP crossing, penetration of shocks, and compression waves across the HP, and their merging in the LISM surrounding it. Modeling identifies forward and reverse shocks propagating through the heliosheath. Voyager data shows that the magnetic field strength experiences a jump at the HP, while the elevation and azimuthal angles are continuous across it. We show that our prior numerical results are in agreement with the Voyager data, if the heliospheric magnetic field is not assumed unipolar. The simulations confirm the importance of taking into account time dependencies of the SW flow, including the presence of transient structures and magnetohydrodynamic instabilities. For the first time, we provide the heliospheric community with the Alfvén speed distribution observed by Voyagers, which shows that it is unexpectedly small and decreases with distance from the HP. This is of critical importance for the identification of physical mechanisms responsible for the Langmuir wave and radio emission generation behind the HP. The data shows that outward-propagating, subcritical shocks traversing the LISM have a rather wide dissipation structure, which raises questions about their ability to reflect electrons as collisionless shocks can do.
Throughout 2017, the Hubble Space Telescope (HST) observed the northern far-ultraviolet aurorae of Saturn at northern solstice, during the Cassini Grand Finale. These conditions provided a complete viewing of the northern auroral region from Earth and a maximal solar illumination, expected to maximize the ionosphere-magnetosphere coupling. We analyze 24 HST images concurrently with Cassini measurements of Saturn's kilometric radiation and solar wind parameters predicted by two magnetohydrodynamic models. The aurorae reveal highly variable components, down to timescales of minutes, radiating 7 to 124 GW. They include a nightside-shifted main oval, unexpectedly frequent and bright cusp emissions, and a dayside low-latitude component. On average, these emissions display a strong local time dependence with two maxima at dawn and premidnight, the latter being newly observed and attributed to nightside injections possibly associated with solstice conditions. These results provide a reference frame to analyze Cassini in situ measurements, whether simultaneous or not. Plain Language SummaryIn 2017, the Hubble Space Telescope regularly observed the northern ultraviolet aurorae of Saturn in coordination with Cassini in situ measurements obtained during the Grand Finale, when the spacecraft flew across magnetic field lines connected to the aurorae. Hubble imaged Saturn's aurorae at 24 occasions spread over 7 months during northern solstice, when the northern auroral region was both fully visible from Earth and permanently illuminated by the Sun. The observed aurorae display a variety of components observed poleward of 68 ∘ latitude with different properties, some of which were unreported before. These emissions strongly vary with time, down to a few minutes, and radiate from 7 to 124 GW. On average, the auroral intensity also strongly varies with local time (a Sun-referenced frame) and peaks at dawn, as previously observed, and also premidnight, pointing to a recurrent nightside activity of the magnetosphere. These results provide a reference basis to analyze Cassini in situ measurements.
The outer heliosphere is a dynamic region shaped largely by the interaction between the solar wind and the interstellar medium. While interplanetary magnetic field and plasma observations by the Voyager spacecraft have significantly improved our understanding of this vast region, modeling the outer heliosphere still remains a challenge. We simulate the three-dimensional, time-dependent solar wind flow from 1 to 80 astronomical units (AU), where the solar wind is assumed to be supersonic, using a two-fluid model in which protons and interstellar neutral hydrogen atoms are treated as separate fluids. We use 1-day averages of the solar wind parameters from the OMNI data set as inner boundary conditions to reproduce time-dependent effects in a simplified manner which involves interpolation in both space and time. Our model generally agrees with Ulysses data in the inner heliosphere and Voyager data in the outer heliosphere. Ultimately, we present the model solar wind parameters extracted along the trajectory of New Horizons spacecraft. We compare our results with in situ plasma data taken between 11 and 33 AU and at the closest approach to Pluto on July 14, 2015.
Flux-rope-based magnetohydrodynamic modeling of coronal mass ejections (CMEs) is a promising tool for prediction of the CME arrival time and magnetic field at Earth. In this work, we introduce a constant-turn flux rope model and use it to simulate the 2012 July 12 16:48 CME in the inner heliosphere. We constrain the initial parameters of this CME using the graduated cylindrical shell (GCS) model and the reconnected flux in post-eruption arcades. We correctly reproduce all the magnetic field components of the CME at Earth, with an arrival time error of approximately 1 hr. We further estimate the average subjective uncertainties in the GCS fittings by comparing the GCS parameters of 56 CMEs reported in multiple studies and catalogs. We determined that the GCS estimates of the CME latitude, longitude, tilt, and speed have average uncertainties of 5.°74, 11.°23, 24.°71, and 11.4%, respectively. Using these, we have created 77 ensemble members for the 2012 July 12 CME. We found that 55% of our ensemble members correctly reproduce the sign of the magnetic field components at Earth. We also determined that the uncertainties in GCS fitting can widen the CME arrival time prediction window to about 12 hr for the 2012 July 12 CME. On investigating the forecast accuracy introduced by the uncertainties in individual GCS parameters, we conclude that the half-angle and aspect ratio have little impact on the predicted magnetic field of the 2012 July 12 CME, whereas the uncertainties in longitude and tilt can introduce relatively large spread in the magnetic field predicted at Earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.