Three distinctive phases of BHA reactivity toward UV/ S2O8(2-) at acidic, neutral, and basic pH range were examined, where 80-100% mineralization has been observed within an hour of irradiation under 254 nm. A reduction in solution pH during the reaction was observed mainly due to the complete conversion of S2O8(2-) to sulfate ion together with proton generation. Seven measurable intermediates were found via an oxidation and dimerization process at all tested pH levels. The BHA decay mechanisms are quite different in acidic condition and at other pH levels. There are three unique intermediates that are only detectable at pH 3 via two additional pathways. This is due to the generation of weaker oxidants or radicals which results in a slower degradation of the BHA, and therefore, the accumulation of these intermediates to detectable levels. The rate of BHA decay generally increases from low to high pH levels; however, the corresponding mineralization at higher pH is retarded due to the futile process of recombining radicals and involvement of intermediates. Therefore, neutral pH was suggested to be the optimum condition in terms of mineralization and moderate efficiency in removing BHA.
Carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) (CBF) is a widely used insecticide. Traditional methods like hydrolysis and direct photolysis cannot remove CBF effectively. In this study, the photodecay of 0.1 mM CBF in UV/H2O2, UV/S2O8(2-), and UV/H2O2/S2O8(2-) and sequential addition of a second oxidant were studied under UV light at 254 nm. The degradations of CBF follow pseudo-first-order decay kinetics. Direct photolysis was slow, but the corresponding degradation rate was increased with the addition of hydrogen peroxide (H2O2) or potassium peroxydisulfate (K2S2O8). In the UV/H2O2 reaction, the optimum reaction rate was 0.9841 min-1 at 10 mM H2O2 (pH 7); however, retardation is observed if H2O2 is overdosed. Such retardation is not observed in the UV/S2O8(2-) system, but a nonlinear increment of removal efficiency is identified. The UV/H2O2/S2O8(2-) process on the other hand shows the best performance in CBF degradation, but it has a less effective mineralization than that of the sole UV/S2O8(2-) reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.